Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Volcanic rocks hold clues to Earth's interior

25.11.2015

The journey for volcanic rocks found on many volcanic islands began deep within the Earth.

Brought to the Earth's surface in eruptions of deep volcanic material, these rocks hold clues as to what is going on deep beneath Earth's surface.


A group of former and current Arizona State University researchers say chemical differences found between rocks samples at volcanic hotspots around the world can be explained by a model of mantle dynamics that involves plumes, upwellings of abnormally hot rock within the Earth's mantle, that originate in the lower mantle and physically interact with chemically distinct piles of material.

Credit: NASA/Jeff Schmaltz/LANCE/EOSDIS MODIS Rapid Response Team/GSFC

Studies of rocks found on certain volcanic islands, known as ocean island basalts, revealed that although these erupted rocks originate from Earth's interior, they are not the same chemically.

According to a group of current and former researchers at Arizona State University, the key to unlocking this complex, geochemical puzzle rests in a model of mantle dynamics consisting of plumes - upwelling's of abnormally hot rock within the Earth's mantle - that originate in the lower mantle and physically interact with chemically distinct piles of material.

... more about:
»Arizona »Earth »helium-4 »volcanism

The team revealed that this theoretical model of material transport can easily produce the chemical variability observed at hotspot volcanoes (such as Hawaii) around the world.

"This model provides a platform for understanding links between the physics and chemistry that formed our modern world as well as habitable planets elsewhere," says Curtis Williams, lead author of the study whose results are published in the Nov. 24 issue of the journal Nature Communications.

Basalts collected from ocean islands such as Hawaii and those collected from mid-ocean ridges (that erupt at spreading centers deep below oceans) may look similar to the naked eye; however, in detail their trace elements and isotopic compositions can be quite distinct. These differences provide valuable insight into the chemical structure and temporal evolution of Earth's interior.

"In particular, it means that the Earth's mantle - the hot rock below Earth's crust but above the planet's iron core - is compositionally heterogeneous. Understanding when and where these heterogeneities are formed and how they are transported through the mantle directly relates to the initial composition of the Earth and how it has evolved to its current, habitable state," said Williams, a postdoc at UC Davis.

While a graduate student in ASU's School of Earth and Space Exploration, Williams and faculty members Allen McNamara and Ed Garnero conceived a study to further understand how chemical complexities that exist deep inside the Earth are transported to the surface and erupt as intraplate volcanism (such as that which formed the Hawaiian islands). Along with fellow graduate student Mingming Li and Professional Research Associate Matthijs van Soest, the researchers depict a model Earth, where in its interior resides distinct reservoirs of mantle material that may have formed during the earliest stages of Earth's evolution.

Employing such reservoirs into their models is supported by geophysical observations of two, continent-sized regions - one below the Pacific Ocean and one below parts of the Atlantic Ocean and Africa - sitting atop the core-mantle boundary.

"In the last several years, we have witnessed a sharpening of the focus knob on seismic imaging of Earth's deep interior.  We have learned that the two large anomalous structures at the base of the mantle behave as if they are compositionally distinct. That is, we are talking about different stuff compared to the surrounding mantle. These represent the largest internal anomalies in Earth of unknown chemistry and origin," said Garnero.

These chemically distinct regions also underlie a majority of hotspot volcanism, via hot mantle plumes from the top of the piles to Earth's surface, suggesting a potential link between these ancient, chemically distinct regions and the chemistry of hotspot volcanism.

To test the validity of their model, Williams and coauthors compare their predictions of the variability of the ratios of helium isotopes (helium-3 and helium-4) in plumes to that observed in ocean island basalts.

3He is a so-called primordial isotope found in the Earth's mantle. It was created before the Earth was formed and is thought to have become entrapped within the Earth during planetary formation. Today, it is not being added to Earth's inventory at a significant rate, unlike 4He, which accumulates over time.

Williams explained: "The ratio of helium-3 to helium-4 in mid-ocean ridge basalts are globally characterized by a narrow range of small values and are thought to sample a relatively homogenous upper mantle. On the other hand, ocean island basalts display a much wider range, from small to very large, providing evidence that they are derived from different source regions and are thought to sample the lower mantle either partially or in its entirety."

The variability of 3He to 4He in ocean island basalts is not only observed between different hotspots, but temporally within the different-aged lavas of a single hotspot track.

"The reservoirs and dynamics associated with this variability had remained unclear and was the primary motivation behind the study presented here," said Williams.

###

Williams continues to combine noble gas measurements with dynamic models of Earth evolution working with Sujoy Mukhopadhyay (Professor and Director of the Noble Gas Laboratory) at the University of California at Davis.

The School of Earth and Space Exploration is a unit of ASU's College of Liberal Arts and Sciences.

Media Contact

Karin Valentine
karin.valentine@asu.edu
480-695-7340

 @ASU

http://asunews.asu.edu/ 

Karin Valentine | EurekAlert!

Further reports about: Arizona Earth helium-4 volcanism

More articles from Earth Sciences:

nachricht World’s oldest known oxygen oasis discovered
18.01.2018 | Eberhard Karls Universität Tübingen

nachricht A close-up look at an uncommon underwater eruption
11.01.2018 | Woods Hole Oceanographic Institution

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>