Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Volcanic carbon dioxide drove ancient global warming event

01.09.2017

New research, led by the University of Southampton and involving a team of international scientists, suggests that an extreme global warming event 56 million years ago was driven by massive CO2 emissions from volcanoes, during the formation of the North Atlantic Ocean.

The study, published in Nature, used a combination of new geochemical measurements and novel global climate modelling to show that the Palaeocene-Eocene Thermal Maximum (PETM) was associated with a geologically rapid doubling of atmospheric CO2 in less than 25 thousand years - with volcanoes squarely to blame.


Lava bursts from a volcano at the present-day Icelandic rift.

Credit: Morgan Jones and Henrik Svenson

The PETM is the most rapid and extreme natural global warming event of the last 66 million years. It lasted for around 150 thousand years and global temperatures increased by at least 5oC - a temperature increase comparable with projections of modern climate beyond the end of this century. While it has long been suggested that the PETM event was caused by the injection of carbon into the ocean and atmosphere; the ultimate trigger, the source of this carbon, and the total amount released, have up to now all remained elusive.

It had been known that the PETM roughly coincided with the formation of massive 'flood basalts' - large stretches of ocean floor coated in lava, resulting from of a series of huge eruptions. These occurred as Greenland first started separating from north-western Europe, thereby creating the North Atlantic Ocean, the vestiges of which are still continuing in miniature in Iceland today. What has been missing is evidence linking these huge volcanic outpourings to the carbon release and warming that marks the PETM.

Dr Marcus Gutjahr, who led the study while a post-doctoral fellow at the University of Southampton, and is now at the GEOMAR Helmholtz Centre for Ocean Research in Kiel Germany, explained: "In order to identify the source of carbon we first generated a new record of the change in ocean pH (a measure of its acidity) through the PETM, by measuring changes in the balance of isotopes of the element boron in ancient marine fossils called foraminifera."

The geochemical facilities at the University of Southampton is one of few locations in the world where this kind of work can be carried out. Foraminifera are tiny marine plankton that live near the sea surface and the chemical makeup of their microscopic shells records the environmental conditions of the time when they lived, millions of years ago.

Professor Andy Ridgwell from University of California, Riverside continued "Ocean pH tells us about the amount of carbon absorbed by ancient seawater, but we can get even more information by also considering changes in the isotopes of carbon, as these provide an indication of its source. When we force a numerical global climate model to take into account both sets of changes, the results point to the large-scale volcanism associated with the opening of the North Atlantic as the primary driver of the PETM."

The team found that the PETM was associated with a total input of more than 10,000 petagrams of carbon from a predominantly volcanic source. This is a vast amount of carbon - some 30 times larger than all the fossil fuels burned to date and equivalent to all current conventional and unconventional fossil fuel reserves. In their computer model simulations, it resulted in the concentration of atmospheric CO2 increasing from 800 parts per million to above 2000 ppm. The Earth's mantle contains more than enough carbon to explain this dramatic rise and it would have been released as magma, pouring from volcanic rifts at the Earth's surface.

Professor Gavin Foster from the University of Southampton said: "How the ancient Earth system responded to this carbon injection at the PETM can tell us a great deal about how it might respond in the future to man-made climate change. For instance, we found that Earth's warming at the PETM was about what we would expect given the CO2 emitted and what we know about the sensitivity of the climate system based on Intergovernmental Panel on Climate Change (IPCC) reports. However, compared with today's human-made carbon emissions, the rate of carbon addition during the PETM was much slower, by about a factor of 20."

Dr Philip Sexton from the Open University in Milton Keynes continues: "We found that carbon cycle feedbacks, like methane release from gas hydrates which were once the favoured explanation of the PETM, did not play a major role in driving the event. On the other hand, one unexpected result of our study was that enhanced organic matter burial was important in ultimately drawing down the released carbon out of the atmosphere and ocean and thereby accelerating the recovery of the Earth system. This shows the real value of studying these ancient warming events as they provide really valuable insights into how Earth behaves when its climate system and carbon cycle are dramatically perturbed."

###

Notes to Editors

1) The paper Very large release of mostly volcanic carbon during the Paleocene-Eocene Thermal Maximum is published in the journal Nature. Journalists can request a copy from Media Relations.

2) Images are available from Media Relations.

3) This collaborative study, also involving the University of Bristol, Cardiff University, University of Bremen, University of California San Diego and Yale University, is an output from 'Abrupt Ocean Acidification Events' jointly funded by the Natural Environment Research Council (NERC), Department for Environment Food and Rural Affairs (DEFRA), and Department of Energy and Climate Change (DECC) as part of the UK ocean acidification research programme.

4) The University of Southampton drives original thinking, turns knowledge into action and impact, and creates solutions to the world's challenges. We are among the top one per cent of institutions globally. Our academics are leaders in their fields, forging links with high-profile international businesses and organisations, and inspiring a 24,000-strong community of exceptional students, from over 135 countries worldwide. Through our high-quality education, the University helps students on a journey of discovery to realise their potential and join our global network of over 200,000 alumni. http://www.southampton.ac.uk

5) Ocean and Earth Science at the University of Southampton has a well-established reputation for outstanding research and teaching. Our unique waterfront campus at the National Oceanography Centre Southampton (NOCS) attracts prominent researchers and educators from around the world, who join us to work within the areas of geochemistry, geology and geophysics, marine biogeochemistry, marine biology and ecology, palaeoceanography and palaeoclimate and physical oceanography. Following publication of the national Research Excellence Framework 2014 (REF2014), OES was ranked second in the UK, for proportion of research recognised as world-leading (4*) in the Earth Systems and Environmental Sciences Unit of Assessment. http://www.southampton.ac.uk/oes/index.page

6) The Open University (OU) is the largest academic institution in the UK and a world leader in flexible distance learning. Since it began in 1969, the OU has taught more than 1.8 million students and has almost 170,000 current students, including more than 15,000 overseas.

Over 70% of students are in full-time or part-time employment, and four out of five FTSE 100 companies have sponsored staff to take OU courses.

In the latest assessment exercise for university research (Research Excellence Framework, 2014), nearly three quarters (72%) of The Open University's research was assessed as 4 or 3 star - the highest ratings available - and awarded to research that is world-leading or internationally excellent. The Open University is unique among UK universities having both an access mission and demonstrating research excellence.

Regarded as the UK's major e-learning institution, the OU is a world leader in developing technology to increase access to education on a global scale. Its vast 'open content portfolio' includes free study units, as well as games, videos and academic articles and has reached audiences of up to 9.8 million across a variety of online formats including OpenLearn, YouTube and iTunes U. For further information please visit: http://www.open.ac.uk

Andrew White | EurekAlert!

More articles from Earth Sciences:

nachricht Researchers create largest, longest multiphysics earthquake simulation to date
14.11.2017 | Gauss Centre for Supercomputing

nachricht When water met iron deep inside the Earth, did it create conditions for life?
14.11.2017 | Carnegie Institution for Science

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

 
Latest News

Butterfly wing inspires photovoltaics: Light absorption can be enhanced by up to 200 percent

15.11.2017 | Power and Electrical Engineering

High speed video recording precisely measures blood cell velocity

15.11.2017 | Health and Medicine

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>