Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Vast energy value in human waste: UN University

03.11.2015

Safe, systematic collection of human waste in low-resource countries could yield valuable fuels, invaluable health and environmental benefits

Biogas from human waste, safely obtained under controlled circumstances using innovative technologies, is a potential fuel source great enough in theory to generate electricity for up to 138 million households - the number of households in Indonesia, Brazil, and Ethiopia combined.


Biogas, approximately 60 percent methane by volume, is generated through the bacterial breakdown of organic matter in an oxygen free system.

Credit: Corinne Schuster-Wallace, UNU-INWEH

A report today from UN University's Canadian-based Institute for Water, Environment and Health estimates that biogas potentially available from human waste worldwide would have a value of up to US$ 9.5 billion in natural gas equivalent.

And the residue, dried and charred, could produce 2 million tonnes of charcoal-equivalent fuel, curbing the destruction of trees.

Finally, experts say, the large energy value would prove small relative to that of the global health and environmental benefits that would accrue from the safe treatment of human waste in low-resource settings.

"Rather than treating our waste as a major liability, with proper controls in place we can use it in several circumstances to build innovative and sustained financing for development while protecting health and improving our environment in the process," according to the report, "Valuing Human Waste as an Energy Resource."

The report uses average waste volume statistics, high and low assumptions for the percentage of concentrated combustable solids contained (25 - 45%), its conversion into biogas and charcoal-like fuel and their thermal equivalents (natural gas and charcoal), to calculate the potential energy value of human waste.

Biogas, approximately 60% methane by volume, is generated through the bacterial breakdown of faecal matter, and any other organic matter, in an oxygen free (anaerobic) system.

Dried and charred faecal sludge, meanwhile, has energy content similar to coal and charcoal.

UN figures show that 2.4 billion people lack access to improved sanitation facilities and almost 1 billion people (about 60% of them in India) don't use toilets at all, defecating instead in the open.

If the waste of only those practicing open defecation was targeted, the financial value of biogas potentially generated exceeds US$ 200 million per year and could reach as high as $376 million. The energy value would equal that of the fuel needed to generate electricity for 10 million to 18 million local households. Processing the residual faecal sludge, meanwhile, would yield the equivalent of 4.8 million to 8.5 million tonnes of charcoal to help power industrial furnaces, for example.

World already reuses the water and nutrients in wastewater

Says lead author Corinne Schuster-Wallace: "Increasingly, water-scarce regions are being driven to separate and reuse the water in wastewater, particularly to expand marginal agricultural lands. There is a technological opportunity, particularly in rural growth areas and small towns, to derive energy as well from this resource."

UNU-INWEH Senior Research Fellow Chris Metcalfe of Trent University notes that human waste, as with animal waste, is already used to improve food production in many places around the world, governed by guidelines to ensure its safe use.

A study in Sweden established that human urine contains over 300 g of phosphorous, 900 g of potassium and 300 g of sulphur per cubic meter. According to the World Health Organization, an individual's body excretes an estimated 4.5 kg of nitrogen and 548 g of phosphorus per year.

"We recycle the nutrients in human waste effectively via agriculture in many places, yet the potential energy value of human waste has been given much less attention to date," says Dr. Metcalfe, a report co-author along with UNU consultant Chris Wild. "Challenges are many but clearly there is a compelling, multi-dimensional financial case to be made for deriving energy from waste."

Says UNU-INWEH Director Zafar Adeel: "When it comes to creating misery and poverty, human waste mismanagement has few rivals. If we can demonstrate a simple, cost effective new approach in low-resource settings, if we can successfully make a business case and change the economic paradigm of human waste management, we can advance development, protect the environment and help reduce sanitation problems causing one-tenth of all world illnesses."

"World Toilet Day, upcoming November 19, offers the opportunity to promote new thinking and to continue puncturing the taboos in many places that inhibit discussion and perpetuate the disgrace and tragedy of inadequate human waste management in many developing world areas. This report contributes to that goal."

Waste to wealth

With initial seed funds from federally-funded Grand Challenges Canada, UNU-INWEH in partnership with the Ugandan Ministry of Water and Environment, its agencies, and other NGO and academic institutions, established the Waste to Wealth national framework.

Waste to Wealth utilises modern anaerobic digestion technologies linked to sanitation systems.

With a focus on rural growth centers and small towns, as well as high population density institutions such as schools and prisons, the biogas and residual material left from energy conversion is a valuable economic resource to provide a return on investment in bioenergy technologies.

The ultimate goal of Waste to Wealth is decentralised (on site) faecal waste management and to help bridge the finance gap for sanitation in Uganda. By identifying value in waste (energy and /or fertilizer), Waste to Wealth provides an incentive to use toilets and a mechanism to finance both upfront capital costs as well as facility operation, maintenance, and expansion. In addition to the economic opportunities, sanitation interventions have known benefits to individual, household and community health and wellbeing.

Video: http://bit.ly/1GH9oRy

Photos: http://bit.ly/1RcC1qr

Website: http://inweh.unu.edu/waste-to-wealth

Phase two of the project involves proof of concept of a series of proposed initiatives, including equipping a Ugandan prison with a $100,000 system requiring approximately $5,000 in annual operating costs, expected to pay for itself through fuel cost savings within 2 years.

Waste to Wealth is one of several pilot projects in Africa to have received seed grants from Grand Challenges Canada for the systematic collection of waste for processing into a variety of energy or agricultural products.

Related projects in Africa include:

Kenya

  • Collecting and converting human waste into solid fuel for use by cement plants and other industries

     

  • Franchising toilets; profitably, safely collecting and removing the waste daily, converting it into fuel and fertilizer, and

     

  • Collecting human waste and converting it into high quality, emission free bio-charcoal cooking fuel

Uganda

Production of biogas and organic fertilizer from street waste

###

UNU-INWEH

http://bit.ly/1vjfKAS

The United Nations University Institute for Water, Environment and Health is a member of the United Nations University family of organizations. It is the UN Think Tank on Water created by the UNU Governing Council in 1996. The mission of the institute is to help resolve pressing water challenges that are of concern to the United Nations, its Member States, and their people, through knowledge- based synthesis of existing bodies of scientific discovery; through cutting edge targeted research that identifies emerging policy issues; through application of on-the-ground scalable solutions based on credible research; and, through relevant and targeted public outreach. It is hosted by the Government of Canada and McMaster University.

Media Contact

Terry Collins
tc@tca.tc
416-878-8712

http://www.unu.edu 

Terry Collins | EurekAlert!

Further reports about: fertilizer natural gas waste management

More articles from Earth Sciences:

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

nachricht Modeling magma to find copper
13.01.2017 | Université de Genève

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Satellite-based Laser Measurement Technology against Climate Change

17.01.2017 | Machine Engineering

Studying fundamental particles in materials

17.01.2017 | Physics and Astronomy

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>