Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unusual cold spell in the stratosphere creates conditions for severe ozone depletion in the Arctic

10.02.2016

AWI researchers measure temperatures of minus 90 degrees Celsius and lower at 20 kilometres altitude

Unusual weather development in the Arctic leads to ozone depletion. According to the researchers of the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) in the past weeks an extreme cold spell in the Arctic stratosphere has created conditions that might cause severe ozone depletion over the Arctic in March – if the next few weeks will not bring a significant warming.


Polar Stratospheric Cloud

Photo: M. Rex / Alfred Wegener Institute

"At about 20 kilometres altitude over the Arctic, the air has been as cold as minus 90 degrees Celsius for weeks," explains AWI atmospheric researcher Dr Marion Maturilli. "Since the beginning of December, above our Arctic research station on Spitsbergen the mean temperature in the stratosphere has been eight degrees Celsius below the long-term average and two degrees Celsius below the previous minimum. These are conditions that can result in substantial ozone depletion."

The depletion of the ozone layer is caused by chlorofluorocarbons, which humankind has released in large quantities over the past decades. Their breakdown products attack the ozone layer, especially after prolonged periods of extreme cold.

Such cold spells usually only occur in the Antarctic winter, which is why an ozone hole forms over the Antarctic every year in spring.

"In the Arctic, on the other hand, the temperatures in the stratosphere are usually higher and much more variable, which means that ozone depletion is limited. Here, severe ozone losses only occur following periods of particularly low temperatures, which we have experienced only very rarely – for example after the cold stratospheric winter of 2010/2011. At that time, ozone depletion also led to a pronounced minimum over the northern hemisphere," says AWI researcher Dr Markus Rex, the coordinator of the EU funded project StratoClim, which observes the situation in the Arctic closely.

Conditions created by stable low-pressure vortex

Model calculations performed by AWI researchers based on the extreme cold spell in recent weeks show that the chemical conditions in the Arctic stratosphere already now exceed the ozone depletion potential of the 2010/2011 winter. "The air masses with these unusual conditions are currently caught in a low-pressure vortex high over the Arctic. Transport of ozone into the vortex has also been low and an ozone minimum has already started to develop. By mid-February more than a quarter of the total ozone above the Arctic will have been destroyed chemically. At that time ozone depletion within the vortex will gain momentum when more intense solar light returns to the Arctic at the end of the polar night," according to Markus Rex. "Should the vortex persist until well into March, the formation of a deep ozone minimum over the Arctic has to be expected. However, if the vortex breaks up before then, the air masses will sufficiently mix with fresh air from lower latitudes and the Arctic will narrowly avoid a new record of ozone depletion," the researcher explains.

The scientists are not currently able to reliably predict the fate of the vortex beyond late February and whether it will break up in time. If a pronounced ozone minimum does develop, there is a chance, that it will drift over Central Europe. In order to closely follow the ozone loss over the Arctic, the StratoClim consortium, together with further international collaborators, is sending hundreds of ozone sensors into the stratosphere from a network of 30 observation stations in an on-going coordinated effort. Furthermore, measurement flights into the Arctic stratosphere with a high-altitude research aircraft are planned for early April.

Cooling of the stratosphere is a consequence of global climate change

"We are expecting a general cooling of the stratosphere as a result of global climate change. The mechanisms that regulate the temperatures of the Arctic stratosphere, however, are complicated and not fully understood. Whether the record low temperatures in the past weeks are linked to climate change is therefore the subject of active research," says Markus Rex.

The production of ozone-depleting CFCs is now banned worldwide by the Montreal Protocol. In the long term, the ozone layer is therefore expected to make a full recovery by the end of the century. "The current unusual situation in the Arctic does not change this positive outlook, even if a record ozone loss over the Arctic should occur this spring," says Markus Rex.

These impressive results probably make the Montreal Protocol the most successful international treaty for the protection of the global environment. However: "Unfortunately, the CFCs already released cannot be removed from the atmosphere and their natural breakdown in the atmosphere is very slow. During the next one to two decades, following unusual cold spells, the Arctic stratosphere will therefore remain susceptible to severe ozone losses," the AWI expert explains.

Original Publication
Related Science article: Record ozone hole may open over Arctic in the spring - DOI:10.1126/science.aaf4033

Notes for Editors:
You can find printable photos of rising ozone sensors at the German-French Arctic research station AWIPEV in Ny-Ålesund, Spitsbergen, in the online version of this press release at: http://www.awi.de/nc/en/about-us/service/press.html

Your scientific contacts at the Alfred Wegener Institute in Potsdam are:
• Topic ozone: Dr Markus Rex (tel.: +49-(0)331 288–2127; e-mail: Markus.Rex(at)awi.de)
• Topic meteorological measurements on Spitsbergen: Dr Marion Maturilli (tel.: +49 (0)331 288–2109; e-mail: Marion.Maturilli(at)awi.de)

Please contact Sina Löschke at the AWI press office (tel.: +49(0)471 4831–2008; e-mail: medien(at)awi.de) if you have further questions.

The Alfred Wegener Institute researches in the Arctic, the Antarctic and oceans in the central and high latitudes. It coordinates polar research in Germany and provides important infrastructure such as the research icebreaker Polarstern and stations in the Arctic and Antarctic for the international science community. The Alfred Wegener Institute is one of the 18 research centres belonging to the Helmholtz Association, which is Germany's largest scientific organisation.

StratoClim (Stratospheric and upper tropospheric processes for better Climate predictions) is a five-year research project funded by the EU, studying changes in the chemical composition of the upper troposphere and stratosphere. The consortium of 28 European research institutions is co-ordinated by AWI. Results of the project will directly improve the representation of key atmospheric processes in global climate models and enhance thus the overall understanding of climate change and its environmental and socio-economic implications. For more information on StratoClim please visit: http://www.stratoclim.org/

Ralf Röchert | idw - Informationsdienst Wissenschaft
Further information:
http://www.awi.de

More articles from Earth Sciences:

nachricht NASA's AIM observes early noctilucent ice clouds over Antarctica
05.12.2016 | NASA/Goddard Space Flight Center

nachricht GPM sees deadly tornadic storms moving through US Southeast
01.12.2016 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>