Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unusual cold spell in the stratosphere creates conditions for severe ozone depletion in the Arctic

10.02.2016

AWI researchers measure temperatures of minus 90 degrees Celsius and lower at 20 kilometres altitude

Unusual weather development in the Arctic leads to ozone depletion. According to the researchers of the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) in the past weeks an extreme cold spell in the Arctic stratosphere has created conditions that might cause severe ozone depletion over the Arctic in March – if the next few weeks will not bring a significant warming.


Polar Stratospheric Cloud

Photo: M. Rex / Alfred Wegener Institute

"At about 20 kilometres altitude over the Arctic, the air has been as cold as minus 90 degrees Celsius for weeks," explains AWI atmospheric researcher Dr Marion Maturilli. "Since the beginning of December, above our Arctic research station on Spitsbergen the mean temperature in the stratosphere has been eight degrees Celsius below the long-term average and two degrees Celsius below the previous minimum. These are conditions that can result in substantial ozone depletion."

The depletion of the ozone layer is caused by chlorofluorocarbons, which humankind has released in large quantities over the past decades. Their breakdown products attack the ozone layer, especially after prolonged periods of extreme cold.

Such cold spells usually only occur in the Antarctic winter, which is why an ozone hole forms over the Antarctic every year in spring.

"In the Arctic, on the other hand, the temperatures in the stratosphere are usually higher and much more variable, which means that ozone depletion is limited. Here, severe ozone losses only occur following periods of particularly low temperatures, which we have experienced only very rarely – for example after the cold stratospheric winter of 2010/2011. At that time, ozone depletion also led to a pronounced minimum over the northern hemisphere," says AWI researcher Dr Markus Rex, the coordinator of the EU funded project StratoClim, which observes the situation in the Arctic closely.

Conditions created by stable low-pressure vortex

Model calculations performed by AWI researchers based on the extreme cold spell in recent weeks show that the chemical conditions in the Arctic stratosphere already now exceed the ozone depletion potential of the 2010/2011 winter. "The air masses with these unusual conditions are currently caught in a low-pressure vortex high over the Arctic. Transport of ozone into the vortex has also been low and an ozone minimum has already started to develop. By mid-February more than a quarter of the total ozone above the Arctic will have been destroyed chemically. At that time ozone depletion within the vortex will gain momentum when more intense solar light returns to the Arctic at the end of the polar night," according to Markus Rex. "Should the vortex persist until well into March, the formation of a deep ozone minimum over the Arctic has to be expected. However, if the vortex breaks up before then, the air masses will sufficiently mix with fresh air from lower latitudes and the Arctic will narrowly avoid a new record of ozone depletion," the researcher explains.

The scientists are not currently able to reliably predict the fate of the vortex beyond late February and whether it will break up in time. If a pronounced ozone minimum does develop, there is a chance, that it will drift over Central Europe. In order to closely follow the ozone loss over the Arctic, the StratoClim consortium, together with further international collaborators, is sending hundreds of ozone sensors into the stratosphere from a network of 30 observation stations in an on-going coordinated effort. Furthermore, measurement flights into the Arctic stratosphere with a high-altitude research aircraft are planned for early April.

Cooling of the stratosphere is a consequence of global climate change

"We are expecting a general cooling of the stratosphere as a result of global climate change. The mechanisms that regulate the temperatures of the Arctic stratosphere, however, are complicated and not fully understood. Whether the record low temperatures in the past weeks are linked to climate change is therefore the subject of active research," says Markus Rex.

The production of ozone-depleting CFCs is now banned worldwide by the Montreal Protocol. In the long term, the ozone layer is therefore expected to make a full recovery by the end of the century. "The current unusual situation in the Arctic does not change this positive outlook, even if a record ozone loss over the Arctic should occur this spring," says Markus Rex.

These impressive results probably make the Montreal Protocol the most successful international treaty for the protection of the global environment. However: "Unfortunately, the CFCs already released cannot be removed from the atmosphere and their natural breakdown in the atmosphere is very slow. During the next one to two decades, following unusual cold spells, the Arctic stratosphere will therefore remain susceptible to severe ozone losses," the AWI expert explains.

Original Publication
Related Science article: Record ozone hole may open over Arctic in the spring - DOI:10.1126/science.aaf4033

Notes for Editors:
You can find printable photos of rising ozone sensors at the German-French Arctic research station AWIPEV in Ny-Ålesund, Spitsbergen, in the online version of this press release at: http://www.awi.de/nc/en/about-us/service/press.html

Your scientific contacts at the Alfred Wegener Institute in Potsdam are:
• Topic ozone: Dr Markus Rex (tel.: +49-(0)331 288–2127; e-mail: Markus.Rex(at)awi.de)
• Topic meteorological measurements on Spitsbergen: Dr Marion Maturilli (tel.: +49 (0)331 288–2109; e-mail: Marion.Maturilli(at)awi.de)

Please contact Sina Löschke at the AWI press office (tel.: +49(0)471 4831–2008; e-mail: medien(at)awi.de) if you have further questions.

The Alfred Wegener Institute researches in the Arctic, the Antarctic and oceans in the central and high latitudes. It coordinates polar research in Germany and provides important infrastructure such as the research icebreaker Polarstern and stations in the Arctic and Antarctic for the international science community. The Alfred Wegener Institute is one of the 18 research centres belonging to the Helmholtz Association, which is Germany's largest scientific organisation.

StratoClim (Stratospheric and upper tropospheric processes for better Climate predictions) is a five-year research project funded by the EU, studying changes in the chemical composition of the upper troposphere and stratosphere. The consortium of 28 European research institutions is co-ordinated by AWI. Results of the project will directly improve the representation of key atmospheric processes in global climate models and enhance thus the overall understanding of climate change and its environmental and socio-economic implications. For more information on StratoClim please visit: http://www.stratoclim.org/

Ralf Röchert | idw - Informationsdienst Wissenschaft
Further information:
http://www.awi.de

More articles from Earth Sciences:

nachricht Less radiation in inner Van Allen belt than previously believed
21.03.2017 | DOE/Los Alamos National Laboratory

nachricht Mars volcano, Earth's dinosaurs went extinct about the same time
21.03.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Vanishing capillaries

23.03.2017 | Health and Medicine

Nanomagnetism in X-ray Light

23.03.2017 | Physics and Astronomy

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>