Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of Tennessee Professor Researches Rare Rock with 30,000 Diamonds

07.01.2015

Diamonds are beautiful and enigmatic. Though chemical reactions that create the highly coveted sparkles still remain a mystery, a professor from the University of Tennessee, Knoxville, is studying a rare rock covered in diamonds that may hold clues to the gem's origins.

The golf-ball sized chunk of rock contains more than 30,000 diamonds, each less than a millimeter in size (rendering them worthless), along with speckles of red and green garnet and other minerals.

The rock was found in Russia's Udachnaya diamond mine in northern Siberia. The diamond company of Russia, ALROSA, loaned it to Earth and Planetary Sciences Professor Larry Taylor and a team of researchers from the Russian Academy of Sciences so they could study the rock to uncover the diamonds' genesis.

Scientists believe that diamonds form at some 100 miles deep in the Earth's mantle and are carried to the surface by special volcanic eruptions. However, most mantle rocks crumble during this journey. This rock is one of only a few hundred recovered in which the diamonds are still in their original setting from within the Earth.

"It is a wonder why this rock has more than 30,000 perfect teeny tiny octahedral diamonds—all 10 to 700 micron in size and none larger," said Taylor. "Diamonds never nucleate so homogeneously as this. Normally, they do so in only a few selective places and grow larger. It's like they didn't have time to coalesce into larger crystals."

Taylor and his colleagues examined the sparkly chunk using a giant X-ray machine to study the diamonds and their relationships with associated materials. They also beamed electrons at the materials inside the diamonds—called inclusions—to study the chemicals trapped inside.

This created two- and three-dimensional images which revealed a relationship between minerals. Analyses of nitrogen indicated the diamonds were formed at higher-than-normal temperatures over longer-than-normal times. The images also showed abnormal carbon isotopes for this type of rock, indicating it was originally formed as part of the crust of the Earth, withdrawn by tectonic shifts and transformed into the shimmery rock we see today.

"These are all new and exciting results, demonstrating evidences for the birth mechanism of diamonds in this rock and diamonds in general," said Taylor.

The findings were presented at the American Geophysical Union's annual conference in San Francisco in December and will be published in a special issue of "Russian Geology and Geophysics" this month.

Contact Information
Whitney Heins
Science Writer
wheins@utk.edu
Phone: 865-974-5460

Whitney Heins | newswise
Further information:
http://www.utk.edu

More articles from Earth Sciences:

nachricht NASA eyes Pineapple Express soaking California
24.02.2017 | NASA/Goddard Space Flight Center

nachricht 'Quartz' crystals at the Earth's core power its magnetic field
23.02.2017 | Tokyo Institute of Technology

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>