Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of Tennessee Professor Researches Rare Rock with 30,000 Diamonds

07.01.2015

Diamonds are beautiful and enigmatic. Though chemical reactions that create the highly coveted sparkles still remain a mystery, a professor from the University of Tennessee, Knoxville, is studying a rare rock covered in diamonds that may hold clues to the gem's origins.

The golf-ball sized chunk of rock contains more than 30,000 diamonds, each less than a millimeter in size (rendering them worthless), along with speckles of red and green garnet and other minerals.

The rock was found in Russia's Udachnaya diamond mine in northern Siberia. The diamond company of Russia, ALROSA, loaned it to Earth and Planetary Sciences Professor Larry Taylor and a team of researchers from the Russian Academy of Sciences so they could study the rock to uncover the diamonds' genesis.

Scientists believe that diamonds form at some 100 miles deep in the Earth's mantle and are carried to the surface by special volcanic eruptions. However, most mantle rocks crumble during this journey. This rock is one of only a few hundred recovered in which the diamonds are still in their original setting from within the Earth.

"It is a wonder why this rock has more than 30,000 perfect teeny tiny octahedral diamonds—all 10 to 700 micron in size and none larger," said Taylor. "Diamonds never nucleate so homogeneously as this. Normally, they do so in only a few selective places and grow larger. It's like they didn't have time to coalesce into larger crystals."

Taylor and his colleagues examined the sparkly chunk using a giant X-ray machine to study the diamonds and their relationships with associated materials. They also beamed electrons at the materials inside the diamonds—called inclusions—to study the chemicals trapped inside.

This created two- and three-dimensional images which revealed a relationship between minerals. Analyses of nitrogen indicated the diamonds were formed at higher-than-normal temperatures over longer-than-normal times. The images also showed abnormal carbon isotopes for this type of rock, indicating it was originally formed as part of the crust of the Earth, withdrawn by tectonic shifts and transformed into the shimmery rock we see today.

"These are all new and exciting results, demonstrating evidences for the birth mechanism of diamonds in this rock and diamonds in general," said Taylor.

The findings were presented at the American Geophysical Union's annual conference in San Francisco in December and will be published in a special issue of "Russian Geology and Geophysics" this month.

Contact Information
Whitney Heins
Science Writer
wheins@utk.edu
Phone: 865-974-5460

Whitney Heins | newswise
Further information:
http://www.utk.edu

More articles from Earth Sciences:

nachricht More than 100 years of flooding and erosion in 1 event
28.03.2017 | Geological Society of America

nachricht Satellites reveal bird habitat loss in California
28.03.2017 | Duke University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>