Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of Tennessee Professor Researches Rare Rock with 30,000 Diamonds

07.01.2015

Diamonds are beautiful and enigmatic. Though chemical reactions that create the highly coveted sparkles still remain a mystery, a professor from the University of Tennessee, Knoxville, is studying a rare rock covered in diamonds that may hold clues to the gem's origins.

The golf-ball sized chunk of rock contains more than 30,000 diamonds, each less than a millimeter in size (rendering them worthless), along with speckles of red and green garnet and other minerals.

The rock was found in Russia's Udachnaya diamond mine in northern Siberia. The diamond company of Russia, ALROSA, loaned it to Earth and Planetary Sciences Professor Larry Taylor and a team of researchers from the Russian Academy of Sciences so they could study the rock to uncover the diamonds' genesis.

Scientists believe that diamonds form at some 100 miles deep in the Earth's mantle and are carried to the surface by special volcanic eruptions. However, most mantle rocks crumble during this journey. This rock is one of only a few hundred recovered in which the diamonds are still in their original setting from within the Earth.

"It is a wonder why this rock has more than 30,000 perfect teeny tiny octahedral diamonds—all 10 to 700 micron in size and none larger," said Taylor. "Diamonds never nucleate so homogeneously as this. Normally, they do so in only a few selective places and grow larger. It's like they didn't have time to coalesce into larger crystals."

Taylor and his colleagues examined the sparkly chunk using a giant X-ray machine to study the diamonds and their relationships with associated materials. They also beamed electrons at the materials inside the diamonds—called inclusions—to study the chemicals trapped inside.

This created two- and three-dimensional images which revealed a relationship between minerals. Analyses of nitrogen indicated the diamonds were formed at higher-than-normal temperatures over longer-than-normal times. The images also showed abnormal carbon isotopes for this type of rock, indicating it was originally formed as part of the crust of the Earth, withdrawn by tectonic shifts and transformed into the shimmery rock we see today.

"These are all new and exciting results, demonstrating evidences for the birth mechanism of diamonds in this rock and diamonds in general," said Taylor.

The findings were presented at the American Geophysical Union's annual conference in San Francisco in December and will be published in a special issue of "Russian Geology and Geophysics" this month.

Contact Information
Whitney Heins
Science Writer
wheins@utk.edu
Phone: 865-974-5460

Whitney Heins | newswise
Further information:
http://www.utk.edu

More articles from Earth Sciences:

nachricht NASA looks to solar eclipse to help understand Earth's energy system
21.07.2017 | NASA/Goddard Space Flight Center

nachricht Scientists shed light on carbon's descent into the deep Earth
19.07.2017 | European Synchrotron Radiation Facility

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>