Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Uncharted territory: 50th MERIAN expedition focuses on seafloor processes in winter

08.01.2016

The North and Baltic Sea face environmental changes resulting from climate change, increasing utilization pressure as well as changes in the catchment area. These changes and their effect on coastal ecosystems are the focus of the German research consortium Küstenforschung Nordsee-Ostsee (KüNO) that aims at providing knowledge and data for a sustainable coastal management. One KüNO research field is the analysis of processes in the sediment water transition zone, which have a major influence on marine matter cycles, especially on releasing nutrients and pollutants. On January 6, 2016, the MARIA S. MERIAN embarked on her 50th expedition to study these processes in winter for the first time.

12 of the 16 scientific participants are researchers from the Leibniz Institute for Baltic Sea Research Warnemünde (IOW); another 4 come from the Helmholtz-Zentrum Geesthacht – Centre for Materials and Coastal Research. The research cruise, which started in the port of Bremerhaven and ends in Rostock Port on January 29, 2016, is headed by chief scientist and IOW director Prof. Dr. Ulrich Bathmann.


The 50th MERIAN expedition focuses on the study of winter conditions just like the RV's maiden voyage 10 years ago in February 2006.

IOW / Neutzling

“For almost three years we have been intensively researching the seafloor of the North and Baltic Sea, its different habitats and their respec-tive ecosystem services within the KüNO programme. What happens down there in winter, however, is largely unknown,” the institute director explains the research focus of the MERIAN expedition.

Yet, adequate modelling of the processes in the sediment water transi-tion zone, which is especially active with regards to marine matter cycles, requires a com-plete set of seasonal data, Bathmann continues. “Winter is not the easiest season to embark on a research cruise, but our scientists are well prepared in every respect,” he adds.

The expedition’s scientific program includes an extensive sampling campaign at 30 stations in the North and Baltic Sea as well as in the Skagerrak / Kattegat strait that connects the two seas. Seafloor samples will be analysed with regards to sediment properties as well as to the presence and activity of zoobenthos populations during winter conditions as bioturbation plays a crucial role in sediment mixing and matter exchange between water and seabed.

This concerns important ecological factors such as oxygen, hydrogen sulfide, or nitrous oxide, as well as organic and inorganic particulate matter sedimenting from the water column. Furthermore, sediment cores will be examined for their content of heavy metals, microplastic particles and organic pollutants; experiments directly on board will be conducted to determine, whether microbial activity contributes to the bioavailability of these harmful substances also under winter conditions.

Physical effects on sediment resuspension by small-scale turbulences as a crucial component of sediment transport processes that enable the release of nutrients and other substances into the water column are monitored with vessel-mounted current profilers and a shear microstructure profiler. Specialized sea bottom landers will be deployed for the in-situ analysis of near-bottom turbulence and suspended particulate matter.

The investigations in the boundary layer of water to sediment will complemented with the classical repertoire of oceanographic analyses of the upper water column at all cruise stations to study the effect of the winter conditions on the deep water environments.

“The ultimate objective of the KüNO research on sediments in the North and Baltic Sea is to develop an atlas for the coastal region that provides a functional assessment of the different sediment provinces and habitats in terms of their ecological service for the coastal ecosystems as a basis for a sustainable management that protects especially important areas,” Ulrich Bathmann explains.

“We believe that our winter expedition, which is the last practical step of this phase in our sediment research, will provide significant progress in the understanding of matter cycle processes at the seafloor. Our findings therefore will be a valuable input for the KüNO sediment/habitat atlas,” the chief scientist concludes on the scientific programme of the current MERIAN cruise.

*Scientific contact:
Prof. Dr. Ulrich Bathmann | IOW Director | chiefscientist@merian.briese-research.de

*Further information on the research consortium “Küstenforschung Nordsee-Ostsee” (KüNO) with the projects “SECOS” and “NOAH” for characterizing sediments and habitats in the North and Baltic Sea: http://www.deutsche-kuestenforschung.de/home.html

*Press and Public Relations at IOW:
Dr. Kristin Beck | Phone: +49 (0)381 – 5197 135 | kristin.beck@io-warnemuende.de
Dr. Barbara Hentzsch | Phone: +49 (0)381 – 5197 102 | barbara.hentzsch@io-warnemuende.de

The IOW is a member of the Leibniz Association with currently 89 research institutes and scientific infrastructure facilities. The focus of the Leibniz Institutes ranges from natural, engineering and environmental sciences to economic, social and space sciences as well as to the humanities. The institutes are jointly financed at the state and national levels. The Leibniz Institutes employ a total of 18.100 people, of whom 9.200 are scientists. The total budget of the institutes is 1.64 billion Euros. (http://www.leibniz-association.eu)

Dr. Kristin Beck | idw - Informationsdienst Wissenschaft

More articles from Earth Sciences:

nachricht NASA examines newly formed Tropical Depression 3W in 3-D
26.04.2017 | NASA/Goddard Space Flight Center

nachricht Early organic carbon got deep burial in mantle
25.04.2017 | Rice University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>