Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Typhoons rain away wrath

01.04.2015

Accurately anticipating an approaching typhoon's destructive force makes all the difference in advance preparations and as a consequence, the cost in lives. But over the decades, climate scientists have not made the same headway in this regard as they have in predicting a typhoon's trajectory.

Researchers at the Okinawa Institute of Science and Technology Graduate University (OIST) have found that an aspect of a typhoon being ignored by current forecasting models plays a significant role in determining the level of havoc it will wreak upon landfall.


Heaviness of rainfall around the typhoon's center is marked by red, green and blue in that order. Areas with the heaviest rainfall, in red and green are around the central column. The Tropical Rainfall Measuring Mission (TRMM) satellite which captured the image is a joint mission between NASA and JAXA.

Credit: NASA Earth Observatory.

Typhoons dump a lot of water in the form of rain. The researchers have demonstrated that the energy lost to friction between this falling rain and the whipping winds of a typhoon can lessen the typhoon's destructive force, or intensity, by as much as 30 percent.

The paper, authored by researchers from OIST's Fluid Mechanics Unit and Continuum Physics Unit, appeared online in Geophysical Research Letters.

The intensity of a typhoon is set by the wind speed at the base of the typhoon's central column. To predict this speed, scientists currently model typhoons as engines fueled by heat from the ocean water.

Heat is carried away from the ocean surface by hot water vapor. This vapor is collected by the spiraling winds of the typhoon and tossed up along the typhoon's central column. As it moves away from the warmth of the ocean, it cools back to water and falls as rain. In the typhoon's central column itself this rainfall amounts to some 2 trillion liters of water per day, which is comparable to a large river falling out of the sky.

"The pace at which energy is lost to friction between rain and winds in a single typhoon would be sufficient to keep the Japanese economy running," said Tapan Sabuwala from OIST's Continuum Physics Unit, the first author of the paper.

The OIST researchers compared their predictions of typhoon intensity to satellite data compiled over the past thirty years and found that the margins of error between prediction and observation reduced significantly when the friction between rain and winds was factored in.

"For this study we used a simple mathematical model. We are now looking into state-of-the-art models that people use for actual forecasting," said Pinaki Chakraborty, head of OIST's Fluid Mechanics Unit.

Climate change is increasing ocean temperatures worldwide. This is expected to lead to stronger typhoons. Predicting their intensities accurately will be crucial to anticipating damages and minimizing loss of lives. The OIST research is a major step in this direction.

Media Contact

Kaoru Natori
kaoru.natori@oist.jp
81-989-662-389

 @oistedu

http://www.oist.jp/ 

Kaoru Natori | EurekAlert!

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>