Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Typhoons rain away wrath

01.04.2015

Accurately anticipating an approaching typhoon's destructive force makes all the difference in advance preparations and as a consequence, the cost in lives. But over the decades, climate scientists have not made the same headway in this regard as they have in predicting a typhoon's trajectory.

Researchers at the Okinawa Institute of Science and Technology Graduate University (OIST) have found that an aspect of a typhoon being ignored by current forecasting models plays a significant role in determining the level of havoc it will wreak upon landfall.


Heaviness of rainfall around the typhoon's center is marked by red, green and blue in that order. Areas with the heaviest rainfall, in red and green are around the central column. The Tropical Rainfall Measuring Mission (TRMM) satellite which captured the image is a joint mission between NASA and JAXA.

Credit: NASA Earth Observatory.

Typhoons dump a lot of water in the form of rain. The researchers have demonstrated that the energy lost to friction between this falling rain and the whipping winds of a typhoon can lessen the typhoon's destructive force, or intensity, by as much as 30 percent.

The paper, authored by researchers from OIST's Fluid Mechanics Unit and Continuum Physics Unit, appeared online in Geophysical Research Letters.

The intensity of a typhoon is set by the wind speed at the base of the typhoon's central column. To predict this speed, scientists currently model typhoons as engines fueled by heat from the ocean water.

Heat is carried away from the ocean surface by hot water vapor. This vapor is collected by the spiraling winds of the typhoon and tossed up along the typhoon's central column. As it moves away from the warmth of the ocean, it cools back to water and falls as rain. In the typhoon's central column itself this rainfall amounts to some 2 trillion liters of water per day, which is comparable to a large river falling out of the sky.

"The pace at which energy is lost to friction between rain and winds in a single typhoon would be sufficient to keep the Japanese economy running," said Tapan Sabuwala from OIST's Continuum Physics Unit, the first author of the paper.

The OIST researchers compared their predictions of typhoon intensity to satellite data compiled over the past thirty years and found that the margins of error between prediction and observation reduced significantly when the friction between rain and winds was factored in.

"For this study we used a simple mathematical model. We are now looking into state-of-the-art models that people use for actual forecasting," said Pinaki Chakraborty, head of OIST's Fluid Mechanics Unit.

Climate change is increasing ocean temperatures worldwide. This is expected to lead to stronger typhoons. Predicting their intensities accurately will be crucial to anticipating damages and minimizing loss of lives. The OIST research is a major step in this direction.

Media Contact

Kaoru Natori
kaoru.natori@oist.jp
81-989-662-389

 @oistedu

http://www.oist.jp/ 

Kaoru Natori | EurekAlert!

More articles from Earth Sciences:

nachricht How much biomass grows in the savannah?
16.02.2017 | Friedrich-Schiller-Universität Jena

nachricht Canadian glaciers now major contributor to sea level change, UCI study shows
15.02.2017 | University of California - Irvine

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>