Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Two views of Super Typhoon Atsani from NASA's Aqua Satellite

20.08.2015

NASA's Aqua satellite passed over Super Typhoon Atsani and captured visible and infrared data on the monster storm. The AIRS and MODIS instruments gathered data that revealed powerful thunderstorms surrounding a wide-open eye.

On August 18 at 03:37 UTC (11:37 p.m. EDT, Aug. 17) the AIRS instrument aboard NASA's Aqua satellite gathered infrared data on Atsani. In a false-colored image of the data created at NASA's Jet Propulsion Laboratory in Pasadena, California, cloud top temperatures revealed cloud top temperatures as cold as 210 kelvin/-63.1F/-81.6C surrounding the eye. Cloud top temperatures that cold indicate very high, powerful thunderstorms with the capability for generating heavy rainfall.


On Aug. 19 the AIRS instrument aboard NASA's Aqua satellite saw Super Typhoon Atsani's cloud top temperatures as cold as 210 kelvin/-63.1F/-81.6C (purple) in powerful thunderstorms circling the center.

Credits: NASA JPL/Ed Olsen

AIRS data also showed that the sea surface temperatures around the storm were warmer than 300 kelvin (80.3 Fahrenheit/26.8 Celsius), warm enough to support the typhoon.

At the same time, the Moderate Resolution Imaging Spectroradiometer or MODIS instrument that flies aboard Aqua captured a visible picture of the storm. The MODIS image showed bands of thunderstorms wrapping into the center from the northwestern and southeastern quadrants.

On August 19, 2015 at 1500 UTC (11 a.m. EDT) Super Typhoon Atsani had maximum sustained winds near 140 knots (161.1 mph/ 259.3 kph), making it a Category 5 hurricane on the Saffir-Simpson Scale. It was centered near 19.6 North latitude and 151.3 East longitude, about 637 nautical miles (733 miles/1,180 km) east-southeast of Iwo To island, Japan. Atsani was moving to the northwest at 7 knots (8 mph/12.9 kph).

Typhoon-force winds were occurring up to 30 nautical miles (34.5 miles/55.5 km) from the center, and tropical storm-force winds were occurring up to 180 nautical miles (207 miles/333 km) from the center, making the storm about 360 nautical miles (414 miles/666.7 km) wide!

Atsani is moving northwest and forecasters at the Joint Typhoon Warning Center expect it will intensify to 145 knots by August 20. Atsani is then expected to becoming extra-tropical as it turns northeast, remaining well south of Japan.

Rob Gutro | EurekAlert!

More articles from Earth Sciences:

nachricht Monitoring lava lake levels in Congo volcano
16.05.2018 | Seismological Society of America

nachricht Ice stream draining Greenland Ice Sheet sensitive to changes over past 45,000 years
14.05.2018 | Oregon State University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>