Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Two NASA satellites see Tropical Storm Andres intensify


The first tropical depression of the eastern Pacific Ocean hurricane season strengthened into tropical storm Andres. NASA's Aqua and Global Precipitation Measurement mission core satellite both provided information showing the storm intensifying.

Tropical storm Andres became the first tropical storm of the 2015 Eastern Pacific hurricane season on May 28 at 1500 UTC (11 a.m. EDT). The GPM core observatory satellite flew over the intensifying tropical depression, then known as tropical depression 01E at 1225 UTC (8:25 a.m. EDT).

The MODIS instrument on NASA's Aqua satellite captured this image of Tropical Storm Andres on May 28 at 2100 UTC (5 p.m. EDT), about six hours after it intensified into a tropical storm.

Courtesy of NASA Goddard MODIS Rapid Response

At NASA's Goddard Space Flight Center in Greenbelt, Md., rainfall data from GPM's Microwave Imager (GMI) and Dual-Frequency Precipitation Radar (Ku Band) instruments were overlaid on an enhanced GOES-East satellite infrared image to create a three-dimensional picture of the storm.

The data showed that rainfall was occurring at a rate of over 60 mm (2.4 inches) per hour in powerful convective storms near Andres' center. GPM radar data showed tall thunderstorms reaching heights of over 15 km (9.3 miles) in a band of thunderstorms.

Eight and a half hours later, the MODIS, or Moderate Resolution Imaging Spectroradiometer, instrument on NASA's Aqua satellite captured a visible light image of tropical storm Andres. On May 28 at 2100 UTC (5 p.m. EDT), about six hours after it intensified into a tropical storm MODIS data showed Andres took on the signature 'comma shape' of a tropical storm.

The bulk of clouds and showers were south of the center of circulation in a large, thick band of thunderstorms spiraling into the center. The image was created by the MODIS Rapid Response Team at NASA Goddard.

At the same time, the Atmospheric Infrared Sounder ,or AIRS, instrument aboard Aqua captured infrared data. Infrared data indicates temperatures, and the higher the thunderstorms are in the troposphere, the colder the temperature. The colder, higher thunderstorms are more powerful storms with the capability of dropping heavier rainfall.

AIRS measured some cloud top temperatures near the center of circulation at minus 63 degrees Fahrenheit (minues 53 degrees Celsius), and research has shown that those storms can generate heavy rainfall.

At 9 a.m. EDT (1500 UTC), the center of tropical storm Andres was located near latitude 12.5 north and longitude 114.6 west, about 780 miles (1,260 km) south-southwest of the southern tip of Baja, Calif.. Andres is moving toward the west-northwest near 9 mph (15 kph). A northwestward motion at a slightly slower forward speed is expected continue through Saturday night.

Maximum sustained winds remain near 70 mph (110 kph) with higher gusts. Some strengthening is forecast during the next 48 hours, and Andres is expected to become a hurricane later in the day on May 29. Tropical storm force winds extend outward up to 115 miles (185 km) from the center. The estimated minimum central pressure is 994 millibars (29.36 inches).

During the past month the National Oceanic and Atmospheric Administration (NOAA) has observed warmer sea surface temperatures in the eastern Pacific Ocean. This indicates that El Nino is becoming stronger. El Nino usually means stronger hurricane activity in the central and eastern pacific basins so many other tropical cyclones are likely to follow Andres lead in the eastern Pacific.

The National Hurricane Center expects Andres' winds to peak on May 31 near 100 mph before a weakening trend commences. Andres is expected to remain at sea, and move in a northwesterly direction over the next several days.

Rob Gutro | EurekAlert!

More articles from Earth Sciences:

nachricht UCI and NASA document accelerated glacier melting in West Antarctica
26.10.2016 | University of California - Irvine

nachricht Ice shelf vibrations cause unusual waves in Antarctic atmosphere
25.10.2016 | American Geophysical Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>