Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Twin volcanic chains above a single hotspot with distinct roots

28.07.2015

Scientists from Kiel find explanation for geochemically distinct parallel tracks of volcanoes formed by the same volcanic hotspot

Located in the South Atlantic, thousands of kilometers away from the nearest populated country, Tristan da Cunha is one of the remotest inhabited islands on earth. Together with the uninhabited neighboring island of Gough about 400 kilometers away, it is part of the British Overseas Territories. Both islands are active volcanoes, derived from the same volcanic hotspot.


Die Lage der Vulkaninseln Tristan da Cunha und Gough im Südatlantik. Image reproduced from the GEBCO world map 2014, www.gebco.net

A team of marine scientists and volcanologists from the GEOMAR Helmholtz Centre for Ocean Research Kiel, from the University of Kiel and the University of London discovered that about 70 million years ago, the composition of the material from the Tristan-Gough hotspot deposited on the seafloor changed.

In the international scientific journal Nature Communications, the team provides an explanation for this compositional change that could help explain similar findings in other hotspots worldwide.

Volcanic hotspots can be found in all oceans. "Pipe-like structures, so-called 'Mantle Plumes', transport hot material from the earth's interior to the base of the earth's lithospheric plates. As the mantle material rises beneath the plate, pressure release melting takes places and these melts rise to the surface forming volcanoes on the seafloor," explains Professor Kaj Hoernle from GEOMAR, lead author of the current study.

As the earth's plates move over the hotspots, the volcanoes are moved away from their sources but new volcanoes form above the hotspots. "As a result long chains of extinct volcanoes extend from the active volcano located above the hotspot for over thousands of kilometers in the direction of plate motion", adds the volcanologist.

Unlike most other hotspots, scientists can trace the history of the Tristan-Gough hotspot back to its initiation. Huge outpourings of flood basalts in Etendeka and Brazil at the initiation of the hotspot 132 million years ago most likely contributed to the breaking apart of the Gondwana supercontinent into new continents including Africa and South America.

The rifting apart of Africa and South America has led to the formation of the South Atlantic Ocean basin. As the Atlantic widened, two underwater mountain ranges (the Walvis Ridge and Guyot Province on the African Plate and the Rio Grande Rise on the South American Plate) formed above the hotspot. The active volcanic islands of Tristan da Cuhna and Gough lie at the end of the track on the African Plate.

Several expeditions, including two with the German research vessel SONNE (I) led by Kiel researchers, recovered samples from these submarine mountains. Geochemical analyzes show that the oldest parts of the Walvis Ridge, as well as the intial volcanic outpourings on the continents, have compositions similar to the presently active Gough volcano.

The northwestern part of the Walvis Ridge and Guyot Province younger than 70 million years, however, is divided into two geographically distinct geochemical domains: "The southern part also shows the geochemically enriched Gough signature, while the northern part is geochemically less enriched, similar to the present Tristan da Cunha Volcano", says co-author Joana Rohde.

A very likely explanation is hidden more than 2,500 kilometers deep in the Earth's lower mantle. At the base of the lower mantle beneath southern Africa, seismic surveys have shown a huge lens of material, which has different physical properties than the surrounding mantle material. This lens is called a "Large Low Shear Velocity Province" (LLSVP).

The Tristan-Gough hotspot is located above the margin of this LLSVP. "In its early stages, the plume only appears to have sucked in material from the LLSVP," explains Professor Hoernle, "but over the course of time the LLSVP material at the NW side of the margin was exhausted and material from outside the LLSVP was drawn into the base of the plume."

Since then, the plume has contained two types of compositionally distinct mantle, leading to the formation of parallel but compositionally distinct plume subtracks. "At some point in the future, the plume might be completely cut off from the LLSVP lens, again erupting only one type of composition, but now Tristan rather than Gough type of material." says the volcanologist.

This model is also applicable to other hotspot tracks such as Hawaii. There, too, is evidence that parallel chains of volcanoes emit geochemically distinct material with one or the other composition dominating at different times in the history of the hotspot. A second LLSVP exists beneath the Pacific. "Thanks to the investigations at the Tristan-Gough-Hotspot, we now understand better the mysterious processes taking place in the interior of our planet," says Professor Hoernle.

Jan Steffen | EurekAlert!

Further reports about: Atlantic GEOMAR Ocean Ocean Research Tristan da Cunha hotspots mantle volcanic volcanoes

More articles from Earth Sciences:

nachricht Early organic carbon got deep burial in mantle
25.04.2017 | Rice University

nachricht New atlas provides highest-resolution imagery of the Polar Regions seafloor
25.04.2017 | British Antarctic Survey

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>