Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Twin volcanic chains above a single hotspot with distinct roots


Scientists from Kiel find explanation for geochemically distinct parallel tracks of volcanoes formed by the same volcanic hotspot

Located in the South Atlantic, thousands of kilometers away from the nearest populated country, Tristan da Cunha is one of the remotest inhabited islands on earth. Together with the uninhabited neighboring island of Gough about 400 kilometers away, it is part of the British Overseas Territories. Both islands are active volcanoes, derived from the same volcanic hotspot.

Die Lage der Vulkaninseln Tristan da Cunha und Gough im Südatlantik. Image reproduced from the GEBCO world map 2014,

A team of marine scientists and volcanologists from the GEOMAR Helmholtz Centre for Ocean Research Kiel, from the University of Kiel and the University of London discovered that about 70 million years ago, the composition of the material from the Tristan-Gough hotspot deposited on the seafloor changed.

In the international scientific journal Nature Communications, the team provides an explanation for this compositional change that could help explain similar findings in other hotspots worldwide.

Volcanic hotspots can be found in all oceans. "Pipe-like structures, so-called 'Mantle Plumes', transport hot material from the earth's interior to the base of the earth's lithospheric plates. As the mantle material rises beneath the plate, pressure release melting takes places and these melts rise to the surface forming volcanoes on the seafloor," explains Professor Kaj Hoernle from GEOMAR, lead author of the current study.

As the earth's plates move over the hotspots, the volcanoes are moved away from their sources but new volcanoes form above the hotspots. "As a result long chains of extinct volcanoes extend from the active volcano located above the hotspot for over thousands of kilometers in the direction of plate motion", adds the volcanologist.

Unlike most other hotspots, scientists can trace the history of the Tristan-Gough hotspot back to its initiation. Huge outpourings of flood basalts in Etendeka and Brazil at the initiation of the hotspot 132 million years ago most likely contributed to the breaking apart of the Gondwana supercontinent into new continents including Africa and South America.

The rifting apart of Africa and South America has led to the formation of the South Atlantic Ocean basin. As the Atlantic widened, two underwater mountain ranges (the Walvis Ridge and Guyot Province on the African Plate and the Rio Grande Rise on the South American Plate) formed above the hotspot. The active volcanic islands of Tristan da Cuhna and Gough lie at the end of the track on the African Plate.

Several expeditions, including two with the German research vessel SONNE (I) led by Kiel researchers, recovered samples from these submarine mountains. Geochemical analyzes show that the oldest parts of the Walvis Ridge, as well as the intial volcanic outpourings on the continents, have compositions similar to the presently active Gough volcano.

The northwestern part of the Walvis Ridge and Guyot Province younger than 70 million years, however, is divided into two geographically distinct geochemical domains: "The southern part also shows the geochemically enriched Gough signature, while the northern part is geochemically less enriched, similar to the present Tristan da Cunha Volcano", says co-author Joana Rohde.

A very likely explanation is hidden more than 2,500 kilometers deep in the Earth's lower mantle. At the base of the lower mantle beneath southern Africa, seismic surveys have shown a huge lens of material, which has different physical properties than the surrounding mantle material. This lens is called a "Large Low Shear Velocity Province" (LLSVP).

The Tristan-Gough hotspot is located above the margin of this LLSVP. "In its early stages, the plume only appears to have sucked in material from the LLSVP," explains Professor Hoernle, "but over the course of time the LLSVP material at the NW side of the margin was exhausted and material from outside the LLSVP was drawn into the base of the plume."

Since then, the plume has contained two types of compositionally distinct mantle, leading to the formation of parallel but compositionally distinct plume subtracks. "At some point in the future, the plume might be completely cut off from the LLSVP lens, again erupting only one type of composition, but now Tristan rather than Gough type of material." says the volcanologist.

This model is also applicable to other hotspot tracks such as Hawaii. There, too, is evidence that parallel chains of volcanoes emit geochemically distinct material with one or the other composition dominating at different times in the history of the hotspot. A second LLSVP exists beneath the Pacific. "Thanks to the investigations at the Tristan-Gough-Hotspot, we now understand better the mysterious processes taking place in the interior of our planet," says Professor Hoernle.

Jan Steffen | EurekAlert!

Further reports about: Atlantic GEOMAR Ocean Ocean Research Tristan da Cunha hotspots mantle volcanic volcanoes

More articles from Earth Sciences:

nachricht Jacobs University supports new mapping of Mars, Mercury and the Moon
21.03.2018 | Jacobs University Bremen gGmbH

nachricht Thawing permafrost produces more methane than expected
20.03.2018 | GFZ GeoForschungsZentrum Potsdam, Helmholtz Centre

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>