Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Travelling pollution – East Asian human activities affect air quality in remote tropical forests

31.03.2015

Researchers from the UK and Malaysia have detected a human fingerprint deep in the Borneo rainforest in Southeast Asia. Cold winds blowing from the north carry industrial pollutants from East Asia to the equator, with implications for air quality in the region. Once there, the pollutants can travel higher into the atmosphere and impact the ozone layer. The research is published today in Atmospheric Chemistry and Physics, an open access journal of the European Geosciences Union (EGU).

Rainforests are often associated with pure, unpolluted air, but in Borneo air quality is very much dependent on which way the wind blows. “On several occasions during northern-hemisphere winter, pockets of cold air can move quickly southwards across Asia towards south China and onward into the South China Sea,” says Matthew Ashfold, Assistant Professor at the University of Nottingham Malaysia Campus.


Borneo rainforest (Credit: Ch'ien C. Lee)

In a new study, Ashfold and his team show that these ‘cold surges’ can very quickly transport polluted air from countries such as China to remote parts of equatorial Southeast Asia. “The pollution travels about 1000 km per day, crossing the South China Sea in just a couple of days,” states Ashfold, who was based at the University of Cambridge, UK, when he conducted parts of the study.

The researchers were initially looking for chemical compounds of natural origin: they wanted to test whether the oceans around Borneo were a source of bromine and chlorine. They designed their experiments to measure these gases, but also detected another gas called perchloroethene, or perc, in the air samples they collected from two locations in the Borneo rainforest. “This gas is a common ‘marker’ for pollution because it does not have natural sources,” says Ashfold.

The team wanted to find out where the man-made gas came from, and where it might go. “We used a UK Met Office computer model of atmospheric transport to look back in time, at where the air samples we collected had travelled from.” Their experiments suggested the high levels of perc in the air samples were influenced by East Asian pollution, as reported in the Atmospheric Chemistry and Physics study.

Perc is produced in a number of industrial and commercial activities, such as dry cleaning and metal degreasing, and exposure to large amounts (above about 100 parts per million) can affect human health. While global emissions of perc have declined in the past 20 years or so, it is not clear whether this has been the case in East Asia, where air pollution has increased over the past couple of decades.

The researchers say the levels of perc measured in Borneo are low, at a few parts per trillion. But because the gas does not occur naturally, even small concentrations are a sign that other more common pollutants, such as carbon monoxide and ozone, could be present. Ozone, for example, can damage forests when in high concentrations, as it reduces plant growth.

Indeed, the team’s measurements showed the amounts of perc varied strongly over the course of about a week, and models they analysed indicated this variation to be related to similar changes in carbon monoxide and ozone. “During the one ‘cold surge’ event we studied in detail, levels of these pollutants over Borneo appeared to be double typical levels,” Ashfold points out.

But diminished air quality in the remote rainforest is not the only way East Asia pollution affects the tropics. “The atmosphere over Southeast Asia and the Western Pacific is home to unusually strong and deep thunderstorms during the northern hemisphere winter. Because of this, the region is an important source of air for the stratosphere,” says Ashfold.

In their study the researchers show that, once in the deep tropics, the polluted air is lifted towards the upper atmosphere. “This can introduce a range of industrial chemicals with atmospheric lifetimes of just a few months to the stratosphere, which could have a potentially negative impact on the ozone layer.”

# # #

Please mention the name of the publication (Atmospheric Chemistry and Physics) if reporting on this story and, if reporting online, include a link to the paper (TBA) or to the journal website (http://www.atmospheric-chemistry-and-physics.net/).

*More information*
This research is presented in the paper ‘Rapid transport of East Asian pollution to the deep tropics’ to appear in the EGU open access journal Atmospheric Chemistry and Physics on 31 March 2015.

The scientific article is available online, free of charge, from the publication date onwards, at http://www.atmos-chem-phys.net/recent_papers.html. A pre-print version of the paper is available for download at http://www.egu.eu/news/150/travelling-pollution-east-asian-human-activities-affe....

The team is composed of M. J. Ashfold (Department of Chemistry, University of Cambridge, UK [Ch. Cam.], now at School of Biosciences, University of Nottingham Malaysia Campus, Semenyih, Malaysia), J. A. Pyle (Ch. Cam. and National Centre for Atmospheric Sciences, UK), A. D. Robinson (Ch. Cam.), E. Meneguz (UK Met Office, Exeter, UK), M. S. M. Nadzir (Universiti Kebangsaan Malaysia, Bangi, Malaysia and Institute of Ocean and Earth Sciences, University of Malaysia, Kuala Lumpur [IOES]), S. M. Phang and A. A. Samah (IOES), S. Ong and H. E. Ung (Global Satria Life Sciences Lab, Tawau, Malaysia), L. K. Peng and S. E. Yong (Malaysian Meteorological Department, Lahad Datu, Malaysia), and N. R. P. Harris (Ch. Cam.).

The European Geosciences Union (EGU) is Europe’s premier geosciences union, dedicated to the pursuit of excellence in the Earth, planetary, and space sciences for the benefit of humanity, worldwide. It is a non-profit interdisciplinary learned association of scientists founded in 2002. The EGU has a current portfolio of 17 diverse scientific journals, which use an innovative open access format, and organises a number of topical meetings, and education and outreach activities. Its annual General Assembly is the largest and most prominent European geosciences event, attracting over 11,000 scientists from all over the world. The meeting’s sessions cover a wide range of topics, including volcanology, planetary exploration, the Earth’s internal structure and atmosphere, climate, energy, and resources. The EGU 2015 General Assembly is taking place in Vienna, Austria, from 12 to 17 April 2015. For information about meeting and press registration, please check http://media.egu.eu or follow the EGU on Twitter (https://twitter.com/EuroGeosciences) and Facebook (http://www.facebook.com/EuropeanGeosciencesUnion).

If you wish to receive our press releases via email, please use the Press Release Subscription Form at http://www.egu.eu/news/subscribe/. Subscribed journalists and other members of the media receive EGU press releases under embargo (if applicable) 24 hours in advance of public dissemination.

*Contacts*
Matthew Ashfold
Assistant Professor at School of Biosciences, University of Nottingham Malaysia Campus
Jalan Broga, Semenyih
Selangor, Malaysia
Tel: +6 (03) 8725 3434
Email: matthew.ashfold@nottingham.edu.my

John Pyle
Professor at the Department of Chemistry, University of Cambridge
Cambridge, UK
Tel: +44 (0) 1223 336473
Email: john.pyle@atm.ch.cam.ac.uk

Neil Harris
Lecturer at the Department of Chemistry, University of Cambridge
Cambridge, UK
Tel: +44 (0) 1223 763816 (shared)
Email: Neil.Harris@ozone-sec.ch.cam.ac.uk

Bárbara Ferreira
EGU Media and Communications Manager
Munich, Germany
Tel: +49 (0) 89 2180 6703
Email: media@egu.eu

Weitere Informationen:

http://www.egu.eu/news/150/travelling-pollution-east-asian-human-activities-affe... – release on the EGU website
http://www.atmospheric-chemistry-and-physics.net/ – Atmospheric Chemistry and Physics (journal)

Dr. Bárbara Ferreira | European Geosciences Union

More articles from Earth Sciences:

nachricht Tiny microenvironments in the ocean hold clues to global nitrogen cycle
23.04.2018 | University of Rochester

nachricht Clear as mud: Desiccation cracks help reveal the shape of water on Mars
20.04.2018 | Geological Society of America

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Structured light and nanomaterials open new ways to tailor light at the nanoscale

23.04.2018 | Physics and Astronomy

On the shape of the 'petal' for the dissipation curve

23.04.2018 | Physics and Astronomy

Clean and Efficient – Fraunhofer ISE Presents Hydrogen Technologies at the HANNOVER MESSE 2018

23.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>