Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Traces of Failed Super-eruption in the Andes

03.08.2016

Geoscientists discover magma volumes of supervolcanic proportions

Geoscientists from Heidelberg University have discovered accumulations of magma in the Andes sufficient to have set off a super-eruption but which, in fact, did not. Such eruptions, which expel enormous quantities of magma, are the largest volcanic events on earth.


Source: Landsat 8, U.S. Geological Survey

The Chao volcano in northern Chile with a lava coulée approx. 14.5 km long (centre of picture). The composition of the lava matches that of deposits of adjacent supervolcanic calderas. Chao erupted about 75,000 years ago, but zircon crystals in the lava were already forming in a subterranean magma reservoir for nearly three million years.

Together with colleagues from the USA, researchers from the Institute of Earth Sciences discovered that magma volumes of supervolcanic proportions have been continuously accumulating in the Altiplano-Puna region since the last super-eruption nearly 2.9 million years ago.

These magmas, however, did not reach the surface to trigger a catastrophic eruption but instead slowly cooled at depth and hardened into plutonic rock. The results of the research were published in the journal “Geology”.

"A supervolcanic eruption spews out more than 1,000 cubic kilometres of magma, which accumulated over time in reservoirs close the earth's surface," explains Prof. Dr Axel Schmitt of the Institute of Earth Sciences. "In turn, these reservoirs are fed from deeper layers in the earth's crust and the underlying mantle. During an eruption, the overlying rock layers collapse into the empty magma chamber and form depressions, known as calderas, of up to 100 kilometres in diameter."

Axel Schmitt indicates that there have been at least seven super-eruptions in the Altiplano-Puna region within the last ten million years, the most recent one about 2.9 million years ago. What remains unclear is why no further major eruptions have occurred since then and whether the region can now be considered inactive for such events.

Using samples from five comparatively small lava domes in northern Chile and southeast Bolivia, the Heidelberg researchers and their American colleagues investigated the most recent eruptions whose chemical composition matches the supervolcanic magmas from the region. They determined the age of very small zircon crystals from these lava flows with the aid of a high-spatial-resolution mass spectrometer.

"The mineral zircon forms almost exclusively in magmas, so its age revealss when those magmas were present under the volcano," explains Axel Schmitt. "The astonishing result was that the ages of the zircons measured from all five of the smaller volcanoes extended continuously from the time of the eruption 75,000 years ago back to the last supervolcanic eruption.”

Prof. Schmitt reports that model calculations demonstrated that zircon formation is only possible over such protracted durations if the inflow of magma amounted to approx. one cubic kilometre over 1,000 years, which is unusually high for a relatively small volcano. "This means that over a long period of time a magma volume of supervolcanic proportions must have accumulated under the five lava domes, which then solidified into plutonic rock at depth."

The volcanologist explains that the lack of a major volcanic eruption does not necessarily indicate that magmatic activity has come to a complete halt. Perhaps the rise in magma from deeper regions merely slowed during the last 2.9 million years, forming an enormous body of rock known as a pluton.

"However, our results also show that a relatively small increase in the long-term magma recharge from about one to five cubic kilometres in 1,000 years would recreate conditions favouring a catastrophic supervolcanic eruption. A new super-eruption in the Altiplano-Puna region would be possible, but only after a long lead time," explains Prof. Schmitt.

Researchers from Oregon State University and the University of California in Los Angeles also contributed to the research.

Original publication:
C. R. Tierney, A. Schmitt, O. M. Lovera, S. L. de Silva: Voluminous plutonism during volcanic quiescence revealed by thermochemical modeling of zircon. Geology (August 2016), doi: 10.1130/G37968.1

Contact:
Prof. Dr. Axel Schmitt
Institute of Earth Sciences
Phone +49 6221 54-4825
axel.schmitt@geow.uni-heidelberg.de

Communications and Marketing
Press Office
Phone +49 6221 54-2311
presse@rektorat.uni-heidelberg.de

Weitere Informationen:

http://www.geow.uni-heidelberg.de/researchgroups/schmitt/index_en.html

Marietta Fuhrmann-Koch | idw - Informationsdienst Wissenschaft

More articles from Earth Sciences:

nachricht Arctic melt ponds form when meltwater clogs ice pores
24.01.2017 | University of Utah

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>