Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Toxic 'marine snow' can sink quickly, persist at ocean depths

29.11.2016

In a new study, researchers from North Carolina State University found that a specific neurotoxin can persist and accumulate in "marine snow" formed by the algae Pseudo-nitzschia, and that this marine snow can reach significant depths quickly. These findings have implications for food safety policies in areas affected by toxic marine algal blooms.

When algae cells run out of nutrients and start to die, they clump together and sink as marine snow. The algae and its marine snow aggregates can serve as a major food source for other forms of marine life like plankton-eating fish and shellfish. Pseudo-nitzschia is a microscopic algae that occurs naturally in coastal waters, and is of particular concern due to its production of the neurotoxin domoic acid.


Chain-forming Pseudo-nitzschia cells.

Credit: Astrid Schnetzer

When domoic acid-containing Pseudo-nitzschia enter the food chain, humans can accidentally consume it via shellfish. This type of shellfish poisoning, known as amnesic shellfish poisoning, can cause neurological and gastrointestinal symptoms ranging from short-term memory loss to - in rare cases - death.

Astrid Schnetzer, associate professor of marine, earth and atmospheric sciences at NC State, wanted to know how domoic acid gets transported to depth via marine snow after a toxic algal bloom and how long it may persist. In a previous study she showed that marine snow can reach depths of several hundred meters within a few days, which contradicted previous theories suggesting that it might dissipate and dissolve long before reaching the ocean floor.

"Recent large toxic blooms off of the California coast and the attendant damage to local shellfish and the shellfish economy underscore the importance of understanding how long the marine snow remains toxic, how deep it can go and how long marine organisms are exposed to the toxin," Schnetzer says. "The fact that high levels of domoic acid can be found in marine life months after a bloom demonstrate the need for deciphering the mechanisms by which domoic acid reaches the seafloor."

Schnetzer and colleagues created their own toxic algal bloom in the lab using P. australis algae, one of the most toxic Pseudo-nitzschia species and one that blooms along the U.S. West Coast. They found that after two weeks, toxic marine snow from this algae could sink at rates of over 100 meters per day. Domoic acid did not dissipate appreciably during the sinking period, retaining up to 80 percent of its original toxicity.

"This study confirms that marine snow is a major vector in terms of getting domoic acid to depth," Schnetzer says. "Our future work will focus on the ways in which smaller organisms that feed on marine snow may be affected by the toxicity, and how that in turn can affect the larger food web."

The research appears in Harmful Algae. The work was funded by National Science Foundation grants 1459406 and 0850425 and North Carolina Sea Grant NA10OAR1040080. Schnetzer is corresponding author. NC State's Christopher Osburn, NC State and University of North Carolina at Chapel Hill's Robert Lampe, UNC-Chapel Hill's Adrian Marchetti, University of South Carolina's Claudia Benitez-Nelson and University of Southern California Los Angeles' Avery Tatters contributed to the work.

###

Note to editors: An abstract of the work follows.

"Marine snow formation by the toxin-producing diatom, Pseudo-nitzschia australis"

DOI: 10.1016/j.hal.2016.11.008

Authors: Astrid Schnetzer, Robert Lampe, Chris Osburn, NC State University; Adrian Marchetti and Robert Lampe, UNC-Chapel Hill; Claudia Benitez-Nelson, University of South Carolina; Avery Tatters, UCLA
Published: Harmful Algae

Abstract: The formation of marine snow (MS) by the toxic diatom Pseudo-nitschia australis was simulated using a roller table experiment. Concentrations of particulate and dissolved domoic acid (pDA and dDA) differed significantly among exponential phase and MS formation under simulated near surface conditions (16ºC/ 12:12-dark:light cycle) and also differed compared to subsequent particle decomposition at 4ºC in the dark, mimicking conditions in deeper waters. Particulate DA was first detected at the onset of exponential growth, reached maximum levels associated with MS aggregates (1.21 ± 0.24 ng mL-1) and declined at an average loss rate of ~1.2% pDA day-1 during particle decomposition. Dissolved DA concentrations increased throughout the experiment and reached a maximum of ~20 ng mL-1 at the final time point on day 88. The succession by P. australis from active growth to aggregation resulted in toxic MS and based on DA loading of particles and known in situ sinking speeds, a significant amount of toxin could have easily reached the deeper ocean or seafloor. MS formation was further associated with significant dDA build up at a ratio of pDA : dDA : cumulative dDA of approximately 1:10:100. Overall, this study confirms MS functions as a major vector for toxin flux to depth, that Pseudo-nitzschia-derived aggregates should be considered 'toxic snow' for MS-associated organisms, and that effects of MS toxicity on interactions with aggregate-associated microbes and zooplankton consumers warrant further consideration.

Media Contact

Tracey Peake
tracey_peake@ncsu.edu
919-515-6142

 @NCStateNews

http://www.ncsu.edu 

Tracey Peake | EurekAlert!

Further reports about: MS acid algal bloom diatom marine life marine snow ocean depths shellfish poisoning toxic

More articles from Earth Sciences:

nachricht Filling the gap: High-latitude volcanic eruptions also have global impact
20.11.2017 | Institute of Atmospheric Physics, Chinese Academy of Sciences

nachricht Antarctic landscape insights keep ice loss forecasts on the radar
20.11.2017 | University of Edinburgh

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

UCLA engineers use deep learning to reconstruct holograms and improve optical microscopy

22.11.2017 | Medical Engineering

Watching atoms move in hybrid perovskite crystals reveals clues to improving solar cells

22.11.2017 | Materials Sciences

New study points the way to therapy for rare cancer that targets the young

22.11.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>