Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Towards a new industrial revolution: studying societies’ metabolism

19.05.2015

To achieve a lasting transition towards sustainability, large-scale conversion of our built environment – cities, transport systems, power generation – is key. This is an outcome of a special feature investigating advances in the research on industrial ecology published in the Proceedings of the US National Academy of Sciences (PNAS) and coordinated by the Potsdam Institute for Climate Impact Research (PIK). Studies cover topics from the urbanization effects to the material basis of modern societies, fundamental research that informs decision-makers.

“Studying the metabolism of today’s societies reveals that small-scale short-term plumbing will not suffice to substantially reduce risks that paradoxically arise from the success of industrialization,” says lead editor Helga Weisz, co-chair of PIK's research domain Transdiciplinary Concepts and Methods.

“Our greenhouse-gas emissions and the resulting climate change illustrate this. It turns out that, if sustainability is the aim, a new industrial and indeed social revolution would be needed. While the industrial revolution of the 19th century was based on fossil fuel and large material throughput, the one of the 21st century would move away from these and towards zero-carbon energy systems and closed material cycles.” The world climate summit in Paris later this year needs to provide a robust foundation for this transition, she adds.

**Infrastructure built today determines tomorrow's burdens**

The research shows that infrastructure that is being built today determines energy and material use for decades. For instance, a spread-out city design creates long distances and renders efficient public transport systems economically unattainable.

“Hence we need to change the systems of urbanization, mobility and energy,” explains Weisz. For instance a global switch to renewable electricity, one study shows, could yield twice the present-day power output at stabilized or reduced environmental impacts. However, the requirements for cement or aluminum would increase.

One of the special issue’s studies shows that the amount of energy used in cities by 2050 could be reduced by more than 25 percent. Cities in developing countries in Asia, Africa and the Middle East have by far the highest potential for energy savings. For cities in industrialized countries, higher gasoline prices combined with a compact urban form would do the job of increasing efficiency, while in developing countries urban form and transport planning are projected to be more important.

In fact, by modelling 274 cities worldwide, from Dar Es Salaam in Tanzania to Hamburg, Germany, the researchers identified eight different types of urbanisation each of which needs different mitigation policies to maximize their impact. Cities are key for tackling the climate challenge since they consume about three quarters of global energy.

**"We need to redraw the material picture of our economy"**

"The large scale transformation of the energy infrastructure to significantly reduce greenhouse gas emissions would be no walk in the park,” says Sangwon Suh of the Bren School of Environmental Science & Management at the University of California in Santa Barbara, co-editor of the special feature. “It would entail a fundamental change in material flows. Ramping up renewable energy production capacity, for instance, leads to much larger flux of specialty metals than today. In order to achieve a smooth transition toward a low-carbon energy future, therefore, we need to fundamentally redraw the material picture of our economy."

It is more than twenty years since PNAS published a similar roundup of insights in this area of research. At that time, the analysis was largely devoid of data and sometimes rather conceptual in nature, whereas the studies now published assess societies’ metabolism in a quantitative way. Also, this strand of research has moved from case-studies to analyses of global material systems and their interaction with society and the environment. Thus the PNAS special feature for the first time outlines industrial ecology as frontier science.

“Understanding and quantifying the physical basis of modern society is a key component of sustainability” says Thomas E. Graedel of the Yale School of Forestry & Environmental Studies, the third co-editor of the special feature. “Addressing this challenge is a central focus of industrial ecology.”

Article: Weisz, H., Suh, S., Graedel, T.E. (2015): Industrial Ecology: The role of manufactured capital in sustainability. Special Feature: Introduction. Proceedings of the National Academy of Sciences [doi: 10.1073/pnas.1506532112]

Weblink to the article: www.pnas.org/cgi/doi/10.1073/pnas.1506532112

Article: Creutzig, F., Baiocchi, G., Bierkandt, R., Pichler, P.-P., Seto, K. (2015): A Global Typology of Urban Energy Use and Potentials for an Urbanization Mitigation Wedge. Proceedings of the National Academy of Sciences [doi: 10.1073/pnas.1315545112]

Weblink to the article: http://www.pnas.org/content/early/2015/01/07/1315545112.abstract

Media contact:
PIK press office
Phone: +49 331 288 25 07
E-Mail: press@pik-potsdam.de
Twitter: @PIK_Climate

Jonas Viering | Potsdam-Institut für Klimafolgenforschung

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>