Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Towards a new industrial revolution: studying societies’ metabolism

19.05.2015

To achieve a lasting transition towards sustainability, large-scale conversion of our built environment – cities, transport systems, power generation – is key. This is an outcome of a special feature investigating advances in the research on industrial ecology published in the Proceedings of the US National Academy of Sciences (PNAS) and coordinated by the Potsdam Institute for Climate Impact Research (PIK). Studies cover topics from the urbanization effects to the material basis of modern societies, fundamental research that informs decision-makers.

“Studying the metabolism of today’s societies reveals that small-scale short-term plumbing will not suffice to substantially reduce risks that paradoxically arise from the success of industrialization,” says lead editor Helga Weisz, co-chair of PIK's research domain Transdiciplinary Concepts and Methods.

“Our greenhouse-gas emissions and the resulting climate change illustrate this. It turns out that, if sustainability is the aim, a new industrial and indeed social revolution would be needed. While the industrial revolution of the 19th century was based on fossil fuel and large material throughput, the one of the 21st century would move away from these and towards zero-carbon energy systems and closed material cycles.” The world climate summit in Paris later this year needs to provide a robust foundation for this transition, she adds.

**Infrastructure built today determines tomorrow's burdens**

The research shows that infrastructure that is being built today determines energy and material use for decades. For instance, a spread-out city design creates long distances and renders efficient public transport systems economically unattainable.

“Hence we need to change the systems of urbanization, mobility and energy,” explains Weisz. For instance a global switch to renewable electricity, one study shows, could yield twice the present-day power output at stabilized or reduced environmental impacts. However, the requirements for cement or aluminum would increase.

One of the special issue’s studies shows that the amount of energy used in cities by 2050 could be reduced by more than 25 percent. Cities in developing countries in Asia, Africa and the Middle East have by far the highest potential for energy savings. For cities in industrialized countries, higher gasoline prices combined with a compact urban form would do the job of increasing efficiency, while in developing countries urban form and transport planning are projected to be more important.

In fact, by modelling 274 cities worldwide, from Dar Es Salaam in Tanzania to Hamburg, Germany, the researchers identified eight different types of urbanisation each of which needs different mitigation policies to maximize their impact. Cities are key for tackling the climate challenge since they consume about three quarters of global energy.

**"We need to redraw the material picture of our economy"**

"The large scale transformation of the energy infrastructure to significantly reduce greenhouse gas emissions would be no walk in the park,” says Sangwon Suh of the Bren School of Environmental Science & Management at the University of California in Santa Barbara, co-editor of the special feature. “It would entail a fundamental change in material flows. Ramping up renewable energy production capacity, for instance, leads to much larger flux of specialty metals than today. In order to achieve a smooth transition toward a low-carbon energy future, therefore, we need to fundamentally redraw the material picture of our economy."

It is more than twenty years since PNAS published a similar roundup of insights in this area of research. At that time, the analysis was largely devoid of data and sometimes rather conceptual in nature, whereas the studies now published assess societies’ metabolism in a quantitative way. Also, this strand of research has moved from case-studies to analyses of global material systems and their interaction with society and the environment. Thus the PNAS special feature for the first time outlines industrial ecology as frontier science.

“Understanding and quantifying the physical basis of modern society is a key component of sustainability” says Thomas E. Graedel of the Yale School of Forestry & Environmental Studies, the third co-editor of the special feature. “Addressing this challenge is a central focus of industrial ecology.”

Article: Weisz, H., Suh, S., Graedel, T.E. (2015): Industrial Ecology: The role of manufactured capital in sustainability. Special Feature: Introduction. Proceedings of the National Academy of Sciences [doi: 10.1073/pnas.1506532112]

Weblink to the article: www.pnas.org/cgi/doi/10.1073/pnas.1506532112

Article: Creutzig, F., Baiocchi, G., Bierkandt, R., Pichler, P.-P., Seto, K. (2015): A Global Typology of Urban Energy Use and Potentials for an Urbanization Mitigation Wedge. Proceedings of the National Academy of Sciences [doi: 10.1073/pnas.1315545112]

Weblink to the article: http://www.pnas.org/content/early/2015/01/07/1315545112.abstract

Media contact:
PIK press office
Phone: +49 331 288 25 07
E-Mail: press@pik-potsdam.de
Twitter: @PIK_Climate

Jonas Viering | Potsdam-Institut für Klimafolgenforschung

More articles from Earth Sciences:

nachricht NASA eyes Pineapple Express soaking California
24.02.2017 | NASA/Goddard Space Flight Center

nachricht 'Quartz' crystals at the Earth's core power its magnetic field
23.02.2017 | Tokyo Institute of Technology

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>