Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Time travel into the past of marginal seas: IOW expedition explores Canadian coastal waters

31.08.2015

Why and how have coastal waters undergone environmental changes during the last decades and centuries? Is it possible to distinguish between natural processes and anthropogenic influences that drive these changes? Can the well-studied Baltic Sea serve as a model for other marginal seas? These questions are guiding the current expedition of the research vessel MARIA S. MERIAN under the lead of the Leibniz Institute for Baltic Sea Research Warnemünde (IOW), which started on August 25, 2015, from Halifax, Canada. It will take the scientific crew from the St. Lawrence Estuary into the Gulf of St. Lawrence and further on along the Labrador coast into the Hudson Strait.

15 of the 25 scientific participants are IOW researchers; another 10 come from Canadian and U. S. research institutions. The four-week expedition has been coordinated by Detlef Schulz-Bull, head of the IOW Marine Chemistry department.


The MARIA S. MERIAN currently cruises Canadian coastal waters, to explore whether the "climate engine" North Atlantic has shaped the environmental conditions of that area during the past millennia.

IOW

“We want to know more about the factors that drive environmental changes of coastal ecosystems: Is it the climate with its fluctuations, the local current dynamics or certain biogeochemical processes that are typical for marginal seas? And what is the role of human impact factors such as eutrophication and environmental pollution?” Schulz-Bull explains the general scientific focus of the cruise.

“Our research program represents a kind of ‘time travel’, allowing us to distinguish between human and natural change drivers. On the one hand we aim at characterizing the current state of our study area, but we also want to explore its – by geological standards – recent past of the last 500 to 1000 years, which has left its traces in the deeper layers of the sea-bed.

The East-Canadian coastal waters, which we are exploring for the first time, are especially interesting in this context as they are in parts comparable to intensively researched marginal seas like the Baltic Sea, while other parts are more strongly influenced by open ocean waters,” the marine chemist further explains.

The expedition’s scientific program includes an extensive sampling campaign at 28 stations, microbiological experiments directly on board as well as computer simulations to extrapolate the results from the stations for the entire Gulf of St. Lawrence.

“Just like the Baltic Sea, the Gulf of St. Lawrence only has a narrow connection to the open North Atlantic with its high salinity. Hence, the gulf also exhibits salinity gradients typical for marginal seas: horizontally from the freshwater of the Lower St. Lawrence Estuary to the brackish areas further downstream to the higher salinities of the outer gulf, and vertically from the low-salinity of the surface waters to the deep saltwater layers, which rarely get mixed and therefore often are oxygen depleted,” says Detlef Schulz-Bull. On the cruise, water sampling and detailed CTD profiling will be used to characterize the properties und the structure of the water column as well as the gradients at each sampling station.

“We are particularly interested to find out whether different organisms have adapted to the variability of salt and oxygen conditions and whether this has influenced species diversity,” Schulz-Bull elaborates. For this purpose, the scientists will perform various onboard experiments with microbial communities isolated from different sampling sites and analyze the macrozoobenthos. Furthermore, nutrient and particulate matter analyses as well as satellite images will be used to get an overview of the spatial and temporal variability of primary production.

Schulz-Bull: “These investigations will provide us with a ‘snapshot’ of the current state of the study area, which gives us an impression of what makes the ecosystem St. Lawrence Gulf ‘tick’ at present. To understand its past, we additionally will take sediment cores at suitable sites. The chronologically layered deposits are like an archive, which allows us to reconstruct past environmental conditions.”

The history of anthropogenic pollution by pesticides, organochlorines and inorganic hazardous substances as mercury, for instance, can be traced through respective residues in the surface layers of the sea-bed. “Proxy investigations such as the analysis of microfossil diatoms and foraminifera in long sediment cores with lengths up to 18 meters, however, will help us to reconstruct climate and ocean circulation changes as long ago as 1000 years,” the project coordinator explains.

Comparable studies in the Baltic Sea have shown that the “climate engine” North Atlantic strongly influenced the environmental conditions, leading to several drastic changes over the last millennia. “Hopefully, the MERIAN expedition will provide the evidence whether the same processes shaped the Canadian marginal sea ecosystems,” concludes Detlef Schulz-Bull on the scientific program of the cruise.

The expedition ends on September 25, 2015, in St. John on Newfoundland, where the scientific crew will leave the ship.

Scientific Contact:
Prof. Dr. Detlef Schulz-Bull | Head of the IOW Marine Chemistry department
Phone: +49 (0)381 – 5197 310 | detlef.schulz-bull@io-warnemuende.de

Press and Public Relations at IOW:
Dr. Kristin Beck | Phone: +49 (0)381 – 5197 135 | kristin.beck@io-warnemuende.de
Dr. Barbara Hentzsch | Phone: +49 (0)381 – 5197 102 | barbara.hentzsch@io-warnemuende.de

The IOW is a member of the Leibniz Association with currently 89 research institutes and scientific infrastructure facilities. The focus of the Leibniz Institutes ranges from natural, engineering and environmental sciences to economic, social and space sciences as well as to the humanities. The institutes are jointly financed at the state and national levels. The Leibniz Institutes employ a total of 18.100 people, of whom 9.200 are scientists. The total budget of the institutes is 1.64 billion Euros. (http://www.leibniz-association.eu)

Dr. Kristin Beck | idw - Informationsdienst Wissenschaft

More articles from Earth Sciences:

nachricht How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas
11.12.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

nachricht What makes corals sick?
11.12.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Using drones to estimate crop damage by wild boars

12.12.2017 | Ecology, The Environment and Conservation

How fires are changing the tundra’s face

12.12.2017 | Ecology, The Environment and Conservation

Telescopes team up to study giant galaxy

12.12.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>