Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Time travel into the past of marginal seas: IOW expedition explores Canadian coastal waters

31.08.2015

Why and how have coastal waters undergone environmental changes during the last decades and centuries? Is it possible to distinguish between natural processes and anthropogenic influences that drive these changes? Can the well-studied Baltic Sea serve as a model for other marginal seas? These questions are guiding the current expedition of the research vessel MARIA S. MERIAN under the lead of the Leibniz Institute for Baltic Sea Research Warnemünde (IOW), which started on August 25, 2015, from Halifax, Canada. It will take the scientific crew from the St. Lawrence Estuary into the Gulf of St. Lawrence and further on along the Labrador coast into the Hudson Strait.

15 of the 25 scientific participants are IOW researchers; another 10 come from Canadian and U. S. research institutions. The four-week expedition has been coordinated by Detlef Schulz-Bull, head of the IOW Marine Chemistry department.


The MARIA S. MERIAN currently cruises Canadian coastal waters, to explore whether the "climate engine" North Atlantic has shaped the environmental conditions of that area during the past millennia.

IOW

“We want to know more about the factors that drive environmental changes of coastal ecosystems: Is it the climate with its fluctuations, the local current dynamics or certain biogeochemical processes that are typical for marginal seas? And what is the role of human impact factors such as eutrophication and environmental pollution?” Schulz-Bull explains the general scientific focus of the cruise.

“Our research program represents a kind of ‘time travel’, allowing us to distinguish between human and natural change drivers. On the one hand we aim at characterizing the current state of our study area, but we also want to explore its – by geological standards – recent past of the last 500 to 1000 years, which has left its traces in the deeper layers of the sea-bed.

The East-Canadian coastal waters, which we are exploring for the first time, are especially interesting in this context as they are in parts comparable to intensively researched marginal seas like the Baltic Sea, while other parts are more strongly influenced by open ocean waters,” the marine chemist further explains.

The expedition’s scientific program includes an extensive sampling campaign at 28 stations, microbiological experiments directly on board as well as computer simulations to extrapolate the results from the stations for the entire Gulf of St. Lawrence.

“Just like the Baltic Sea, the Gulf of St. Lawrence only has a narrow connection to the open North Atlantic with its high salinity. Hence, the gulf also exhibits salinity gradients typical for marginal seas: horizontally from the freshwater of the Lower St. Lawrence Estuary to the brackish areas further downstream to the higher salinities of the outer gulf, and vertically from the low-salinity of the surface waters to the deep saltwater layers, which rarely get mixed and therefore often are oxygen depleted,” says Detlef Schulz-Bull. On the cruise, water sampling and detailed CTD profiling will be used to characterize the properties und the structure of the water column as well as the gradients at each sampling station.

“We are particularly interested to find out whether different organisms have adapted to the variability of salt and oxygen conditions and whether this has influenced species diversity,” Schulz-Bull elaborates. For this purpose, the scientists will perform various onboard experiments with microbial communities isolated from different sampling sites and analyze the macrozoobenthos. Furthermore, nutrient and particulate matter analyses as well as satellite images will be used to get an overview of the spatial and temporal variability of primary production.

Schulz-Bull: “These investigations will provide us with a ‘snapshot’ of the current state of the study area, which gives us an impression of what makes the ecosystem St. Lawrence Gulf ‘tick’ at present. To understand its past, we additionally will take sediment cores at suitable sites. The chronologically layered deposits are like an archive, which allows us to reconstruct past environmental conditions.”

The history of anthropogenic pollution by pesticides, organochlorines and inorganic hazardous substances as mercury, for instance, can be traced through respective residues in the surface layers of the sea-bed. “Proxy investigations such as the analysis of microfossil diatoms and foraminifera in long sediment cores with lengths up to 18 meters, however, will help us to reconstruct climate and ocean circulation changes as long ago as 1000 years,” the project coordinator explains.

Comparable studies in the Baltic Sea have shown that the “climate engine” North Atlantic strongly influenced the environmental conditions, leading to several drastic changes over the last millennia. “Hopefully, the MERIAN expedition will provide the evidence whether the same processes shaped the Canadian marginal sea ecosystems,” concludes Detlef Schulz-Bull on the scientific program of the cruise.

The expedition ends on September 25, 2015, in St. John on Newfoundland, where the scientific crew will leave the ship.

Scientific Contact:
Prof. Dr. Detlef Schulz-Bull | Head of the IOW Marine Chemistry department
Phone: +49 (0)381 – 5197 310 | detlef.schulz-bull@io-warnemuende.de

Press and Public Relations at IOW:
Dr. Kristin Beck | Phone: +49 (0)381 – 5197 135 | kristin.beck@io-warnemuende.de
Dr. Barbara Hentzsch | Phone: +49 (0)381 – 5197 102 | barbara.hentzsch@io-warnemuende.de

The IOW is a member of the Leibniz Association with currently 89 research institutes and scientific infrastructure facilities. The focus of the Leibniz Institutes ranges from natural, engineering and environmental sciences to economic, social and space sciences as well as to the humanities. The institutes are jointly financed at the state and national levels. The Leibniz Institutes employ a total of 18.100 people, of whom 9.200 are scientists. The total budget of the institutes is 1.64 billion Euros. (http://www.leibniz-association.eu)

Dr. Kristin Beck | idw - Informationsdienst Wissenschaft

More articles from Earth Sciences:

nachricht Northern oceans pumped CO2 into the atmosphere
27.03.2017 | CAGE - Center for Arctic Gas Hydrate, Climate and Environment

nachricht Weather extremes: Humans likely influence giant airstreams
27.03.2017 | Potsdam-Institut für Klimafolgenforschung

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>