Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


The Red Sea - An Ocean Like All Others, After All


GEOMAR researchers specify models for the birth of the youngest world ocean

Actually, the Red Sea is an ideal study object for marine geologists. There they can observe the formation of an ocean in its early phase. However, the Red Sea seemed to go through a different birthing process than the other oceans.

Bathymetry of a 70-kilometer long section of the rift zone in the Red Sea. In the lower right is the same section in the previous resolution. Graphics: N. Augustin, GEOMAR

Now, Scientists at the GEOMAR Helmholtz Centre for Ocean Research Kiel and the King Abdulaziz University in Jeddah were able to show that salt glaciers have distorted the previous models. The study was just published in the international journal "Earth and Planetary Science Letters".

Pacific, Atlantic and Indian Ocean, with the land masses of the Americas, Europe, Asia, Africa and Australia in between – that’s how we know our earth. From a geologist's point of view, however, this is only a snapshot. Over the course of the earth’s history, many different continents have formed and split again. In between oceans were created, new seafloor was formed and disappeared again: Plate tectonics is the generic term for these processes.

The Red Sea, where currently the Arabian Peninsula separates from Africa, is one of the few places on earth where the splitting of a continent and the emergence of the ocean can be observed. During a three-year joint project, the Jeddah Transect Project (JTP), researchers at the GEOMAR Helmholtz Centre for Ocean Research Kiel and the King Abdulaziz University (KAU) in Jeddah, Saudi Arabia, have taken a close look at this crack in the earth's crust by means of seabed mapping, sampling and magnetic modeling.

"The findings have shed new light on the early stages of oceanic basins, and they specifically change the school of thought on the Red Sea," says Dr. Nico Augustin from GEOMAR, lead author of the study. It has now been published in the scientific journal "Earth and Planetary Science Letters".

It is, and was, undisputed that a continent is stretched and thinned out by volcanic activity before it ruptures and a new ocean basin is formed. The rifting occurs where the greatest stretching takes place. However, the detailed processes during the break-up are debated in research. On the one hand, one needs to better understand the dynamics of our home planet.

"On the other hand, most marine oil and gas resources are located near such former fracture zones. This research can therefore also have economic and political implications," says Professor Colin Devey (GEOMAR), co-author of the study.

Until now, conventional knowledge said that a continent is breaking apart more or less simultaneously along an entire line, and the ocean basin is formed all at once. The Red Sea, however, did not fit into this picture. Here, a model was favored with several smaller fracture zones, lined up one after the other, that would unite gradually, which in turn would lead to a relatively slow emergence of the ocean during a long transition phase.

"Our studies show that the Red Sea is not an exception but that it takes its place in line with the other ocean basins," says Augustin. The previous picture we had of the ocean floor in the Red Sea was simply corrupted by salt glaciers. "The volcanic rocks we recovered are similar to those from other normal mid-ocean ridges," says co-author Froukje van der Zwan, working on her PhD as part of the JTP.

During the early formation stages of the Red Sea, the area was covered by a very shallow sea that dried up repeatedly. This created thick salt deposits that later on broke apart with the continental crust. Over geologic time periods, salt shows tar-like behavior and begins to flow.

"Our new high-resolution seabed maps and magnetic modeling show that the kilometer-thick salt deposits, after the break-up of the Arabian Plate from Africa, flowed like glaciers toward the newly created trench and thus over the oceanic crust due to gravity,” says Augustin. Since these submarine salt glaciers do not cover the rifting zone uniformly over the entire length, the impression of several small fracture zones was created.

The consequences of this discovery are profound: For one, there really seems to be only one single mechanism worldwide for the dispersal of a continent. And secondly, is not yet known how much ocean crust is covered by salt. This questions the previous dating of the opening of the Red Sea.

In addition, the volcanically active trench rift zone of the Red Sea, surrounded by salt glaciers, is host of a giant sink filled with a very hot and very salty solution. "Since the sediment in the salt solution is rich in metals, this so-called Atlantis II Deep is also of economic interest," says co-author Devey. It is quite conceivable that over the course of the earth’s history similar deposits associated with volcanism and salt deposits were created during the opening phase of other oceans. "Thus, our studies help to clarify older research questions. But they also provide starting points for new investigations in all of the oceans," says Augustin.

Original publication:
Augustin, N., C. W. Devey, F. M. van der Zwan, Peter Feldens, M. Tominaga, R. A. Bantan, T. Kwasnitschka (2014): The rifting to spreading transition in the Red Sea. Earth and Planetary Science Letters, 395, 

High resolution images:

Bathymetry of a 70-kilometer long section of the rift zone in the Red Sea. In the lower right is the same section in the previous resolution. Graphics: N. Augustin, GEOMAR

The Dutch research vessel PELAGIA was used in the Red Sea during the Jeddah Transect Project, generating a survey of the rift zone with unprecedented accuracy. Photo: F. van der Zwan, GEOMAR

Schematic representation of the break-up of the Red Sea. In some places, salt glaciers pushed across the fault line and cover parts of the continuous rift zone, even today. Graphics: N. Augustin, GEOMAR 

Dr. Nico Augustin (GEOMAR, RD4-Magmatic and Hydrothermal Systems), naugustin(at)  
Jan Steffen (GEOMAR, Communication & Media), Tel.: + 49 431 600-2811, jsteffen(at)   

Jan Steffen | Eurek Alert!
Further information:

Further reports about: Earth Earth's crust GEOMAR Graphics Helmholtz Ocean Planetary Red Sea oceans plate tectonics volcanic activity

More articles from Earth Sciences:

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

nachricht UM researchers study vast carbon residue of ocean life
19.10.2016 | University of Miami Rosenstiel School of Marine & Atmospheric Science

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>