Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Red Sea - An Ocean Like All Others, After All

07.05.2014

GEOMAR researchers specify models for the birth of the youngest world ocean

Actually, the Red Sea is an ideal study object for marine geologists. There they can observe the formation of an ocean in its early phase. However, the Red Sea seemed to go through a different birthing process than the other oceans.


Bathymetry of a 70-kilometer long section of the rift zone in the Red Sea. In the lower right is the same section in the previous resolution. Graphics: N. Augustin, GEOMAR

Now, Scientists at the GEOMAR Helmholtz Centre for Ocean Research Kiel and the King Abdulaziz University in Jeddah were able to show that salt glaciers have distorted the previous models. The study was just published in the international journal "Earth and Planetary Science Letters".

Pacific, Atlantic and Indian Ocean, with the land masses of the Americas, Europe, Asia, Africa and Australia in between – that’s how we know our earth. From a geologist's point of view, however, this is only a snapshot. Over the course of the earth’s history, many different continents have formed and split again. In between oceans were created, new seafloor was formed and disappeared again: Plate tectonics is the generic term for these processes.

The Red Sea, where currently the Arabian Peninsula separates from Africa, is one of the few places on earth where the splitting of a continent and the emergence of the ocean can be observed. During a three-year joint project, the Jeddah Transect Project (JTP), researchers at the GEOMAR Helmholtz Centre for Ocean Research Kiel and the King Abdulaziz University (KAU) in Jeddah, Saudi Arabia, have taken a close look at this crack in the earth's crust by means of seabed mapping, sampling and magnetic modeling.

"The findings have shed new light on the early stages of oceanic basins, and they specifically change the school of thought on the Red Sea," says Dr. Nico Augustin from GEOMAR, lead author of the study. It has now been published in the scientific journal "Earth and Planetary Science Letters".

It is, and was, undisputed that a continent is stretched and thinned out by volcanic activity before it ruptures and a new ocean basin is formed. The rifting occurs where the greatest stretching takes place. However, the detailed processes during the break-up are debated in research. On the one hand, one needs to better understand the dynamics of our home planet.

"On the other hand, most marine oil and gas resources are located near such former fracture zones. This research can therefore also have economic and political implications," says Professor Colin Devey (GEOMAR), co-author of the study.

Until now, conventional knowledge said that a continent is breaking apart more or less simultaneously along an entire line, and the ocean basin is formed all at once. The Red Sea, however, did not fit into this picture. Here, a model was favored with several smaller fracture zones, lined up one after the other, that would unite gradually, which in turn would lead to a relatively slow emergence of the ocean during a long transition phase.

"Our studies show that the Red Sea is not an exception but that it takes its place in line with the other ocean basins," says Augustin. The previous picture we had of the ocean floor in the Red Sea was simply corrupted by salt glaciers. "The volcanic rocks we recovered are similar to those from other normal mid-ocean ridges," says co-author Froukje van der Zwan, working on her PhD as part of the JTP.

During the early formation stages of the Red Sea, the area was covered by a very shallow sea that dried up repeatedly. This created thick salt deposits that later on broke apart with the continental crust. Over geologic time periods, salt shows tar-like behavior and begins to flow.

"Our new high-resolution seabed maps and magnetic modeling show that the kilometer-thick salt deposits, after the break-up of the Arabian Plate from Africa, flowed like glaciers toward the newly created trench and thus over the oceanic crust due to gravity,” says Augustin. Since these submarine salt glaciers do not cover the rifting zone uniformly over the entire length, the impression of several small fracture zones was created.

The consequences of this discovery are profound: For one, there really seems to be only one single mechanism worldwide for the dispersal of a continent. And secondly, is not yet known how much ocean crust is covered by salt. This questions the previous dating of the opening of the Red Sea.

In addition, the volcanically active trench rift zone of the Red Sea, surrounded by salt glaciers, is host of a giant sink filled with a very hot and very salty solution. "Since the sediment in the salt solution is rich in metals, this so-called Atlantis II Deep is also of economic interest," says co-author Devey. It is quite conceivable that over the course of the earth’s history similar deposits associated with volcanism and salt deposits were created during the opening phase of other oceans. "Thus, our studies help to clarify older research questions. But they also provide starting points for new investigations in all of the oceans," says Augustin.


Original publication:
Augustin, N., C. W. Devey, F. M. van der Zwan, Peter Feldens, M. Tominaga, R. A. Bantan, T. Kwasnitschka (2014): The rifting to spreading transition in the Red Sea. Earth and Planetary Science Letters, 395, http://dx.doi.org/10.1016/j.epsl.2014.03.047 

High resolution images:

Bathymetry of a 70-kilometer long section of the rift zone in the Red Sea. In the lower right is the same section in the previous resolution. Graphics: N. Augustin, GEOMAR

The Dutch research vessel PELAGIA was used in the Red Sea during the Jeddah Transect Project, generating a survey of the rift zone with unprecedented accuracy. Photo: F. van der Zwan, GEOMAR

Schematic representation of the break-up of the Red Sea. In some places, salt glaciers pushed across the fault line and cover parts of the continuous rift zone, even today. Graphics: N. Augustin, GEOMAR 

Contact:
Dr. Nico Augustin (GEOMAR, RD4-Magmatic and Hydrothermal Systems), naugustin(at)geomar.de  
Jan Steffen (GEOMAR, Communication & Media), Tel.: + 49 431 600-2811, jsteffen(at)geomar.de   

Jan Steffen | Eurek Alert!
Further information:
http://www.geomar.de

Further reports about: Earth Earth's crust GEOMAR Graphics Helmholtz Ocean Planetary Red Sea oceans plate tectonics volcanic activity

More articles from Earth Sciences:

nachricht Extreme makeover: Mankind's unprecedented transformation of Earth
30.06.2015 | University of Leicester

nachricht Atmospheric mysteries unraveling
30.06.2015 | University of Colorado at Boulder

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: X-rays and electrons join forces to map catalytic reactions in real-time

New technique combines electron microscopy and synchrotron X-rays to track chemical reactions under real operating conditions

A new technique pioneered at the U.S. Department of Energy's Brookhaven National Laboratory reveals atomic-scale changes during catalytic reactions in real...

Im Focus: Iron: A biological element?

Think of an object made of iron: An I-beam, a car frame, a nail. Now imagine that half of the iron in that object owes its existence to bacteria living two and a half billion years ago.

Think of an object made of iron: An I-beam, a car frame, a nail. Now imagine that half of the iron in that object owes its existence to bacteria living two and...

Im Focus: Thousands of Droplets for Diagnostics

Researchers develop new method enabling DNA molecules to be counted in just 30 minutes

A team of scientists including PhD student Friedrich Schuler from the Laboratory of MEMS Applications at the Department of Microsystems Engineering (IMTEK) of...

Im Focus: Bionic eye clinical trial results show long-term safety, efficacy vision-restoring implant

Patients using Argus II experienced significant improvement in visual function and quality of life

The three-year clinical trial results of the retinal implant popularly known as the "bionic eye," have proven the long-term efficacy, safety and reliability of...

Im Focus: Lasers for Fast Internet in Space – Space Technology from Aachen

On June 23, the second Sentinel mission was launched from the space mission launch center in Kourou. A critical component of Aachen is on board. Researchers at the Fraunhofer Institute for Laser Technology ILT and Tesat-Spacecom have jointly developed the know-how for space-qualified laser components. For the Sentinel mission the diode laser pump module of the Laser Communication Terminal LCT was planned and constructed in Aachen in cooperation with the manufacturer of the LCT, Tesat-Spacecom, and the Ferdinand Braun Institute.

After eight years of preparation, in the early morning of June 23 the time had come: in Kourou in French Guiana, the European Space Agency launched the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

World Conference on Regenerative Medicine: Abstract Submission has been extended to 24 June

16.06.2015 | Event News

MUSE hosting Europe’s largest science communication conference

11.06.2015 | Event News

 
Latest News

Offshore wind park Westermost Rough officially inaugurated

01.07.2015 | Press release

Siemens Velaro train wins "Red Dot" award

01.07.2015 | Awards Funding

Liquids on Fibers - Slipping or Flowing?

01.07.2015 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>