Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The most accurate optical single-ion clock worldwide

10.02.2016

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock which attains an accuracy which had only been predicted theoretically so far. Their optical ytterbium clock achieved a relative systematic measurement uncertainty of 3 E-18. The results have been published in the current issue of the scientific journal "Physical Review Letters".

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock which attains an accuracy which had only been predicted theoretically so far.


Radio-frequency trap of PTB's optical ytterbium single-ion clock. (Photo: PTB)


Schematic representation: Measuring the influence of thermal ambient radiation on the frequency of the trapped ion: the "clock laser" (blue beam) excites the trapped ion (yellow) with a special pulse sequence. The resonance frequency of the ion is influenced by infrared radiation (here by an infrared laser, red beam). This can be measured by means of the clock laser. (Fig.: PTB)

As early as 1981, Hans Dehmelt, who was to be awarded a Nobel prize later, had already developed the basic notions of how to use an ion kept in a high-frequency trap to build a clock which could attain the – then unbelievably low – relative measurement uncertainty in the range of 1E-18.

Ever since, an increasing number of research groups worldwide have been trying to achieve this with optical atomic clocks (either based on single trapped ions or on many neutral atoms). The PTB scientists are the first to have reached the finishing line using a single-ion clock. Their optical ytterbium clock achieved a relative systematic measurement uncertainty of 3 E-18. The results have been published in the current issue of the scientific journal "Physical Review Letters".

The definition and realization of the SI unit of time, the second, is currently based on cesium atomic clocks. Their "pendulum" consists of atoms which are excited into resonance by microwave radiation (1E10 Hz). It is regarded as certain that a future redefinition of the SI second will be based on an optical atomic clock. These have a considerably higher excitation frequency (1E14 to 1E15 Hz), which makes them much more stable and more accurate than cesium clocks.

The accuracy now achieved with the ytterbium clock is approximately a hundred times better than that of the best cesium clocks. To develop their clock, the researchers from PTB exploited particular physical properties of Yb+. This ion has two reference transitions which can be used for an optical clock.

One of these transitions is based on the excitation into the so-called "F state" which, due to its extremely long natural lifetime (approx. 6 years), provides exceptionally narrow resonance. In addition, due to the particular electronic structure of the F state, the shifts of the resonance frequency caused by electric and magnetic fields are exceptionally small.

The other reference transition (into the D3/2 state) exhibits higher frequency shifts and is therefore used as a sensitive "sensor" to optimize and control the operating conditions. Another advantage is that the wavelengths of the lasers required to prepare and excite Yb+ are in a range in which reliable and affordable semiconductor lasers can be used.

The decisive factor for the last leap in accuracy was the combination of two measures: firstly, a special procedure was conceived for the excitation of the reference transition. With this procedure, the "light shift" of the resonance frequency caused by the exciting laser is measured separately.

This information is then used to immunize the excitation of the reference transition against the light shift and its possible variation. Secondly, the frequency shift caused by the thermal infrared radiation of the environment (which is relatively small for the F state of Yb+ anyway) was determined with a measurement uncertainty of only 3 %. For this purpose, the frequency shift caused by laser light and its intensity distribution at the ion's location were measured at four different wavelengths in the infrared range.

Another particular property of the F state of Yb+ is the strong dependence of the state energy on the value of the fine-structure constant (the elementary fundamental constant of electromagnetic interaction) and on the anisotropy effects in the interaction between electrons and certain potential forms of the so-called dark matter which plays an important part in the present cosmologic standard model. Comparisons between Yb+ clocks and other highly accurate optical clocks are currently probably the most promising way of verifying theories from this area of "new physics" in the lab.
(es/ptb)

Contact:
Dr. Christian Tamm, Senior Scientist, Department 4.4, Subject Area "Optical frequency standards", phone: +49 (0)531 5924415, e-mail: christian.tamm@ptb.de

Scientific publication:
N. Huntemann, C. Sanner, B. Lipphardt, Chr. Tamm, E. Peik: Single ion atomic clock with 3 E-18 uncertainty. Phys. Rev. Lett. 116, 063001 (2016)

Weitere Informationen:

http://www.ptb.de/cms/en/presseaktuelles/journalisten/press-releases/press-relea...

Dipl.-Journ. Erika Schow | idw - Informationsdienst Wissenschaft

More articles from Earth Sciences:

nachricht Climate change weakens Walker circulation
20.10.2017 | MARUM - Zentrum für Marine Umweltwissenschaften an der Universität Bremen

nachricht Shallow soils promote savannas in South America
20.10.2017 | Senckenberg Forschungsinstitut und Naturmuseen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>