Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The ebb and flow of Greenland’s glaciers

02.06.2015

New study could improve understanding of Greenland’s contribution to sea-level rise

In northwestern Greenland, glaciers flow from the main ice sheet to the ocean in see-sawing seasonal patterns. The ice generally flows faster in the summer than in winter, and the ends of glaciers, jutting out into the ocean, also advance and retreat with the seasons.


Icebergs choke the fjord where Jakobshavn glacier flows into the sea off western Greenland. A new analysis shows that the mechanisms that drive the seasonal ebb and flow of some Greenland glaciers are different from those driving longer-term trends like overall retreat of glaciers, and faster flows. Lead author of the Journal of Geophysical Research paper, CU-Boulder’s Twila Moon, said she hopes it will help scientists better anticipate how a warming Greenland will contribute to sea level rise.

Credit: Ian Joughin, University of Washington.

Now, a new analysis shows some important connections between these seasonal patterns, sea ice cover and longer-term trends. Glaciologists hope the findings, accepted for publication in the June issue of the American Geophysical Union’s Journal of Geophysical Research-Earth Surface and available online now, will help them better anticipate how a warming Greenland will contribute to sea level rise.

“Rising sea level can be hard on coastal communities, with higher storm surges, greater flooding and saltwater encroachment on freshwater,” said lead author Twila Moon, a researcher at the National Snow and Ice Data Center (NSIDC). NSIDC is part of the Cooperative Institute for Research in Environmental Sciences (CIRES) at the University of Colorado Boulder.

“We know that sea level will go up in the future,” Moon said. “The challenge is to understand how quickly it will rise, and one element of that is better understanding how Greenland glaciers behave.”

Moon and colleagues from the University of Washington focused on 16 glaciers in northwest Greenland, collecting detailed information on glacier speed, terminus position (the “end” of the glacier in the ocean) and sea ice conditions, during the years 2009-2014.

Sea ice had an important influence on the glaciers: When the waters in front of the glacier were completely covered by sea ice, the ends of the glaciers often advanced out away from land; icebergs that might otherwise have broken off and floated away stayed attached. When sea ice broke up in the spring, the ends of the glaciers usually quickly retreated back toward land as icebergs broke away.

By contrast, seasonal swings in glacier speed had little to do with sea ice conditions or glacier terminus location. Rather, the speed (velocity) of ice flow is likely responding to changes in the surface melt on top of the ice sheet and the movement of meltwater through and under the ice sheet.

Over the longer-term, however, Moon and her colleagues found a tight relationship between the speed of glaciers and terminus location. When sea ice levels were especially low and glaciers’ toes (termini) retreated more than normal and then didn’t re-advance, the glaciers sped up, moving ice toward the sea more quickly. While low sea ice is likely not the full cause of the changes, it may be a visible indication of other processes, such as subsurface ice melt, that also affect terminus retreat, Moon said.

It’s important to recognize that the mechanisms driving seasonal glacier changes—in northwestern Greenland and around the world—are not necessarily the same ones driving longer-term trends, Moon said. Knowing the differences may help researchers better anticipate the impact of anomalously low sea ice years, for example.

“We do know we’re going to see sea ice reduction in this area, and it’s possible we can begin to estimate how that may affect glacier velocities,” Moon said. It’s also possible, she said, that researchers and communities interested in long-term glacial changes—the kind that affect sea levels—may not need to focus as much on seasonal advance and retreat of the rivers of ice.

“It may be that we need to instead pay more attention to these out-of-bounds events, these anomalous years of very low sea ice or very high melt that likely have the greatest influence on longer-term trends.”

This research was funded by NASA and the National Science Foundation.

The American Geophysical Union is dedicated to advancing the Earth and space sciences for the benefit of humanity through its scholarly publications, conferences, and outreach programs. AGU is a not-for-profit, professional, scientific organization representing more than 60,000 members in 139 countries. Join the conversation on Facebook, Twitter, YouTube, and our other social media channels.

Notes for Journalists
Journalists and public information officers (PIOs) of educational and scientific institutions who have registered with AGU can download a PDF copy of the article by clicking on this link: http://onlinelibrary.wiley.com/doi/10.1002/2015JF003494/full?campaign=wlytk-41855.5282060185

Or, you may order a copy of the final paper by emailing your request to Nanci Bompey at nbompey@agu.org. Please provide your name, the name of your publication, and your phone number.

Neither the papers nor this press release is under embargo.
Title
“Seasonal to multiyear variability of glacier surface velocity, terminus position, and sea ice/ice mélange in northwest Greenland”

Authors:
Twila Moon: Earth and Space Sciences and Polar Science Center, Applied Physics Laboratory, University of Washington, Seattle, Washington, USA; now at National Snow and Ice Data Center and Cooperative Institute for Research in Environmental Sciences at the University of Colorado – Boulder, USA;

Ian Joughin and Ben Smith: Polar Science Center, Applied Physics Laboratory, University of Washington, Seattle, Washington, USA.

Contact Information for the Authors:
Twila Moon: twila.moon@nsidc.org (Dr. Moon is in Greenland this week, available by email and by Skype)


AGU Contact:
Nanci Bompey
+1 (202) 777-7524
nbompey@agu.org

CIRES Contact:
Katy Human
+1 (303) 735-0196
Kathleen.human@colorado.edu

Nanci Bompey | American Geophysical Union
Further information:
http://news.agu.org/press-release/the-ebb-and-flow-of-greenlands-glaciers/

More articles from Earth Sciences:

nachricht By saving cost and energy, the lighting revolution may increase light pollution
23.11.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

nachricht Frictional Heat Powers Hydrothermal Activity on Enceladus
23.11.2017 | Universität Heidelberg

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Underwater acoustic localization of marine mammals and vehicles

23.11.2017 | Information Technology

Enhancing the quantum sensing capabilities of diamond

23.11.2017 | Physics and Astronomy

Meadows beat out shrubs when it comes to storing carbon

23.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>