Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The ebb and flow of Greenland’s glaciers

02.06.2015

New study could improve understanding of Greenland’s contribution to sea-level rise

In northwestern Greenland, glaciers flow from the main ice sheet to the ocean in see-sawing seasonal patterns. The ice generally flows faster in the summer than in winter, and the ends of glaciers, jutting out into the ocean, also advance and retreat with the seasons.


Icebergs choke the fjord where Jakobshavn glacier flows into the sea off western Greenland. A new analysis shows that the mechanisms that drive the seasonal ebb and flow of some Greenland glaciers are different from those driving longer-term trends like overall retreat of glaciers, and faster flows. Lead author of the Journal of Geophysical Research paper, CU-Boulder’s Twila Moon, said she hopes it will help scientists better anticipate how a warming Greenland will contribute to sea level rise.

Credit: Ian Joughin, University of Washington.

Now, a new analysis shows some important connections between these seasonal patterns, sea ice cover and longer-term trends. Glaciologists hope the findings, accepted for publication in the June issue of the American Geophysical Union’s Journal of Geophysical Research-Earth Surface and available online now, will help them better anticipate how a warming Greenland will contribute to sea level rise.

“Rising sea level can be hard on coastal communities, with higher storm surges, greater flooding and saltwater encroachment on freshwater,” said lead author Twila Moon, a researcher at the National Snow and Ice Data Center (NSIDC). NSIDC is part of the Cooperative Institute for Research in Environmental Sciences (CIRES) at the University of Colorado Boulder.

“We know that sea level will go up in the future,” Moon said. “The challenge is to understand how quickly it will rise, and one element of that is better understanding how Greenland glaciers behave.”

Moon and colleagues from the University of Washington focused on 16 glaciers in northwest Greenland, collecting detailed information on glacier speed, terminus position (the “end” of the glacier in the ocean) and sea ice conditions, during the years 2009-2014.

Sea ice had an important influence on the glaciers: When the waters in front of the glacier were completely covered by sea ice, the ends of the glaciers often advanced out away from land; icebergs that might otherwise have broken off and floated away stayed attached. When sea ice broke up in the spring, the ends of the glaciers usually quickly retreated back toward land as icebergs broke away.

By contrast, seasonal swings in glacier speed had little to do with sea ice conditions or glacier terminus location. Rather, the speed (velocity) of ice flow is likely responding to changes in the surface melt on top of the ice sheet and the movement of meltwater through and under the ice sheet.

Over the longer-term, however, Moon and her colleagues found a tight relationship between the speed of glaciers and terminus location. When sea ice levels were especially low and glaciers’ toes (termini) retreated more than normal and then didn’t re-advance, the glaciers sped up, moving ice toward the sea more quickly. While low sea ice is likely not the full cause of the changes, it may be a visible indication of other processes, such as subsurface ice melt, that also affect terminus retreat, Moon said.

It’s important to recognize that the mechanisms driving seasonal glacier changes—in northwestern Greenland and around the world—are not necessarily the same ones driving longer-term trends, Moon said. Knowing the differences may help researchers better anticipate the impact of anomalously low sea ice years, for example.

“We do know we’re going to see sea ice reduction in this area, and it’s possible we can begin to estimate how that may affect glacier velocities,” Moon said. It’s also possible, she said, that researchers and communities interested in long-term glacial changes—the kind that affect sea levels—may not need to focus as much on seasonal advance and retreat of the rivers of ice.

“It may be that we need to instead pay more attention to these out-of-bounds events, these anomalous years of very low sea ice or very high melt that likely have the greatest influence on longer-term trends.”

This research was funded by NASA and the National Science Foundation.

The American Geophysical Union is dedicated to advancing the Earth and space sciences for the benefit of humanity through its scholarly publications, conferences, and outreach programs. AGU is a not-for-profit, professional, scientific organization representing more than 60,000 members in 139 countries. Join the conversation on Facebook, Twitter, YouTube, and our other social media channels.

Notes for Journalists
Journalists and public information officers (PIOs) of educational and scientific institutions who have registered with AGU can download a PDF copy of the article by clicking on this link: http://onlinelibrary.wiley.com/doi/10.1002/2015JF003494/full?campaign=wlytk-41855.5282060185

Or, you may order a copy of the final paper by emailing your request to Nanci Bompey at nbompey@agu.org. Please provide your name, the name of your publication, and your phone number.

Neither the papers nor this press release is under embargo.
Title
“Seasonal to multiyear variability of glacier surface velocity, terminus position, and sea ice/ice mélange in northwest Greenland”

Authors:
Twila Moon: Earth and Space Sciences and Polar Science Center, Applied Physics Laboratory, University of Washington, Seattle, Washington, USA; now at National Snow and Ice Data Center and Cooperative Institute for Research in Environmental Sciences at the University of Colorado – Boulder, USA;

Ian Joughin and Ben Smith: Polar Science Center, Applied Physics Laboratory, University of Washington, Seattle, Washington, USA.

Contact Information for the Authors:
Twila Moon: twila.moon@nsidc.org (Dr. Moon is in Greenland this week, available by email and by Skype)


AGU Contact:
Nanci Bompey
+1 (202) 777-7524
nbompey@agu.org

CIRES Contact:
Katy Human
+1 (303) 735-0196
Kathleen.human@colorado.edu

Nanci Bompey | American Geophysical Union
Further information:
http://news.agu.org/press-release/the-ebb-and-flow-of-greenlands-glaciers/

More articles from Earth Sciences:

nachricht How much biomass grows in the savannah?
16.02.2017 | Friedrich-Schiller-Universität Jena

nachricht Canadian glaciers now major contributor to sea level change, UCI study shows
15.02.2017 | University of California - Irvine

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>