Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Arctic: Interglacial period with a break

28.05.2015

Scientists at the Goethe University Frankfurt and at the Senckenberg Biodiversity and Climate Research Centre working together with their Canadian counterparts, have reconstructed the climatic development of the Arctic Ocean during the Cretaceous period. They found out that there was a severe cold snap during the geological age known for its extreme greenhouse climate. The study is published in the professional journal Geology.

Scientists at the Goethe University Frankfurt and at the Senckenberg Biodiversity and Climate Research Centre working together with their Canadian counterparts, have reconstructed the climatic development of the Arctic Ocean during the Cretaceous period, 145 to 66 million years ago.


Beprobung kreidezeitlicher Sedimente am

Lost Hammer Diapir auf Axel Heiberg Island.

© Claudia Schröder-Adams

The research team comes to the conclusion that there was a severe cold snap during the geological age known for its extreme greenhouse climate. The study published in the professional journal Geology is also intended to help improve prognoses of future climate and environmental development and the assessment of human influence on climate change.

The Cretaceous, which occurred approximately 145 million to 66 million years ago, was one of the warmest periods in the history of the earth. The poles were devoid of ice and average temperatures of up to 35 degrees Celsius prevailed in the oceans.

"A typical greenhouse climate; some even refer to it as a 'super greenhouse' ", explains Professor Dr. Jens Herrle of the Goethe University and Senckenberg Biodiversity and Climate Research Centre, and adds: "We have now found indications in the Arctic that this warm era 112 to 118 million years ago was interrupted for a period of about 6 million years."

In cooperation with his Canadian colleague Professor Claudia Schröder-Adams of the Carleton University in Ottawa, the Frankfurt palaeontologist sampled the Arctic Fjord Glacier and the Lost Hammer diapir locality on Axel Heiberg Island in 5 to 10 metre intervals. "In so doing, we also found so-called glendonites", Herrle recounts.

Glendonite refers to star-shaped calcite minerals, which have taken on the crystal shape of the mineral ikaite. "These so-called pseudomorphs from calcite to ikaite are formed because ikaite is stable only below 8 degrees Celsius and metamorphoses into calcite at warmer temperatures", explains Herrle and adds:

"Thus, our sedimentological analyses and age dating provide a concrete indication for the environmental conditions in the cretaceous Arctic and substantiate the assumption that there was an extended interruption of the interglacial period in the Arctic Ocean at that time."

In two research expeditions to the Arctic undertaken in 2011 and 2014, Herrle brought 1700 rock samples back to Frankfurt, where he and his working group analysed them using geochemical and paleontological methods. But can the Cretaceous rocks from the polar region also help to get a better understanding of the current climate change? "Yes", Herrle thinks, elaborating: "The polar regions are particularly sensitive to global climatic fluctuations.

Looking into the geological past allows us to gain fundamental knowledge regarding the dynamics of climate change and oceanic circulation under extreme greenhouse conditions. To be capable of better assessing the current man-made climate change, we must, for example, understand what processes in an extreme greenhouse climate contribute significantly to climate change."

In the case of the Cretaceous cold snap, Herrle assumes that due to the opening of the Atlantic in conjunction with changes in oceanic circulation and marine productivity, more carbon was incorporated into the sediments. This resulted in a decrease in the carbon dioxide content in the atmosphere, which in turn produced global cooling.

The Frankfurt scientist's newly acquired data from the Cretaceous period will now be correlated with results for this era derived from the Atlantic, "in order to achieve a more accurate stratigraphic classification of the Cretaceous period and to better understand the interrelationships between the polar regions and the subtropics", is the outlook Herrle provides.

Publication
Jens O. Herrle, Claudia J., Schröder-Adams, William Davis, Adam T. Pugh, Jennifer M. Galloway, and Jared Fath: Mid-Cretaceous High Arctic stratigraphy, climate, and Oceanic Anoxic Events, in: Geology, 19 Mai 2015, 10.1130/G36439.1 Open Access
http://geology.gsapubs.org/cgi/content/abstract/G36439.1v1

Information: Prof. Dr. Jens O. Herrle, Senckenberg Biodiversity and Climate Research Centre, Faculty of Geoscience and Geography, Goethe University Frankfurt, Phone +49 (0)69 798 40180, jens.herrle@em.uni-frankfurt.de

Goethe University is a research-oriented university in the European financial centre Frankfurt founded in 1914 with purely private funds by liberally-oriented Frankfurt citizens. It is dedicated to research and education under the motto "Science for Society" and to this day continues to function as a "citizens’ university". Many of the early benefactors were Jewish. Over the past 100 years, Goethe University has done pioneering work in the social and sociological sciences, chemistry, quantum physics, brain research and labour law. It gained a unique level of autonomy on 1 January 2008 by returning to its historic roots as a privately funded university. Today, it is among the top ten in external funding and among the top three largest universities in Germany, with three clusters of excellence in medicine, life sciences and the humanities.

Publisher: The President of Goethe University Frankfurt
Editor: Dr. Anke Sauter, Science Editor, International Communication, Phone +49(0)69 798-12498, Fax +49(0)69 798-761 12531, sauter@pvw.uni-frankfurt.de
Internet: www.uni-frankfurt.de 

Dr. Anke Sauter | idw - Informationsdienst Wissenschaft

More articles from Earth Sciences:

nachricht Geophysicists and atmospheric scientists partner to track typhoons' seismic footprints
16.02.2018 | Princeton University

nachricht NASA finds strongest storms in weakening Tropical Cyclone Sanba
15.02.2018 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>