Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sunlight and the right microbes convert Arctic carbon into carbon dioxide

05.10.2017

Nearly half of the organic carbon stored in soil around the world is contained in Arctic permafrost, which has experienced rapid melting, and that organic material could be converted to greenhouse gases that would exacerbate global warming.

When permafrost thaws, microbial consumption of those carbon reserves produces carbon dioxide - much of which eventually winds up in the atmosphere, but scientists have been unsure of just how the system works.


There is little shade in the Arctic, so when the permafrost melts, carbon is released into streams and lakes where a combination of sunlight and microbes converts it to carbon dioxide.

Credit: Rose Cory, University of Michigan

A new study published this week in Nature Communications outlines the mechanisms and points to the importance of both sunlight and the right microbial community as keys to converting permafrost carbon to CO2. The research was supported by the U.S. National Science Foundation and the Department of Energy.

"We've long known that microbes convert the carbon into CO2, but previous attempts to replicate the Arctic system in laboratory settings have failed," noted Byron Crump, an Oregon State University biogeochemist and co-author on the study. "As it turns out, that is because the laboratory experiments did not include a very important element - sunlight.

"When the permafrost melts and stored carbon is released into streams and lakes in the Arctic, it gets exposed to sunlight, which enhances decay by some microbial communities, and destroys the activity for other communities. Different microbes react differently, but there are hundreds, even thousands of different microbes out there and it turns out that the microbes in soils are well-equipped to eat sunlight-exposed permafrost carbon."

The research team from Oregon State and the University of Michigan was able to identify compounds that the microbes prefer using high-resolution chemistry and genetic approaches. They found that sunlight makes permafrost soils tastier for microbes because it converts it to the same kinds of carbon they already like to eat - the carbon they are adapted to metabolize.

"The carbon we're talking about moves from the soil into rivers and lakes, where it is completely exposed to sunlight," Crump said. "There are no trees and no shade, and in the summer, there are 24 hours a day of sunlight. That makes sunlight potentially more important in converting carbon into CO2 in the Arctic than in a tropical forest, for example."

As the climate continues to warm, there are interesting ramifications for the Arctic, said Crump, who is a faculty member in OSU's College of Earth, Ocean, and Atmospheric Sciences.

"The long-term forecast for the Arctic tundra ecosystem is for the warming to lead to shrubs and bigger plants replacing the tundra, which will provide shade from the sunlight," Crump said. "That is considered a negative feedback. But there also is a positive feedback, in that seasons are projected to expand. Spring will arrive earlier, and fall will be later, and more water and carbon will enter lakes and streams with more rapid degradation of carbon.

"Which feedback will be stronger? No one can say for sure."

The stakes are high, Crump said. There is more carbon stored in the frozen permafrost than in the atmosphere. It has accumulated over millions of years by plants growing and dying, with a very slow decaying process because of the freezing weather.

"Some of the organic matter is less tasty to microbes than others," Crump said, "but bacterial communities are diverse, so there will be something out there that wants that energy and will use it."

Byron Crump | EurekAlert!

More articles from Earth Sciences:

nachricht Radioactivity from oil and gas wastewater persists in Pennsylvania stream sediments
22.01.2018 | Duke University

nachricht World’s oldest known oxygen oasis discovered
18.01.2018 | Eberhard Karls Universität Tübingen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Thanks for the memory: NIST takes a deep look at memristors

22.01.2018 | Materials Sciences

Radioactivity from oil and gas wastewater persists in Pennsylvania stream sediments

22.01.2018 | Earth Sciences

Saarland University bioinformaticians compute gene sequences inherited from each parent

22.01.2018 | Life Sciences

VideoLinks Wissenschaft & Forschung
Overview of more VideoLinks >>>