Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Successful filming of fastest aurora flickering

10.08.2017

The word "aurora" invokes an image of a slowly shimmering curtain of light illuminating the sky. However, when an explosive aurora occurs, known as a breakup, it sometimes leads to another phenomenon called "flickering". When an aurora "flickers" its brightness and motion in some areas begin to change rapidly. This flickering typically oscillates at a 1/10 second period, which is equivalent to the ion cyclotron frequency (*1) of oxygen ions.

Dr. Yoko Fukuda (formally of the Graduate School of Science at The University of Tokyo), Dr. Ryuho Kataoka of the National Institute of Polar Research, and other collaborators conducted a 3 year continuous high-speed imaging observation at Poker Flat Research Range, Alaska, USA, and identified the physics behind the flickering. At the same time, they discovered faster flickerings at speeds of 1/60-1/50 and 1/80 of a second.


This is a flickering aurora. The pale pink area at the center is flickering. Filmed by: Ayumi Y. Bakken, filmed at: Fairbanks, AK, USA; filming date: March 18, 2015; playback speed: 1x.

Credit: Ayumi Y. Bakken


These are high-speed cameras installed at the Neal Davis Science Operations Center at the Poker Flat Research Range of the University of Alaska.

Credit: NIPR

On March 19, 2016, the researchers observed an aurora with the brightness that ranked within the top 5 of all observations since 2014, and was filmed with a 1/160 second shutter speed camera. Detailed analysis of the footage showed a high-speed flickering aurora vibrating with a 1/80 second period taking place during the brightest moment of the breakup.

"High-speed flickering at 1/80 seconds could not be explained by oxygen ions alone. Lighter ions, such as those from hydrogen, are thought to be contributing to the flickering," explains Dr. Fukuda. "The fact that this high-speed flickering was observed at the same time as flickering with a typical 1/10 second period may mean that the flickering aurora was caused by 'electromagnetic ion cyclotron waves' (*2), which are affected by both oxygen and hydrogen ions."

At altitudes of several thousand kilometers, various plasma waves are excited by accelerating electrons and ions. These electrons are what eventually generate auroras. It is assumed that a complex exchange of energy, in which plasma waves are affected by electrons and ions and vice versa, takes place here.

"Astronomical objects with magnetic fields are found throughout the cosmos, with Earth being one of them. On such objects, we observe excitation of plasma waves by accelerating particles, and the interactions between plasma waves and particles, are occurring all over the place," concludes Dr. Kataoka. "However, Earth is the only place we can observe these phenomena in detail. Understanding the behavior of plasma in outer space, and the interactions between plasma waves and particles is a fundamental question in geophysics. We will continue to investigate them in the future."

###

*1: Ion cyclotron frequency

The circular motion of electrons and ions around a magnetic field line is called cyclotron motion. Ion cyclotron frequency is the number of times per second that the electrons and ions circle around the field line. It is inversely proportional to the mass of the electrons and ions--the frequency is greater if the mass is lighter. The frequency also correlates with the strength of the magnetic field; it is greater at lower altitudes where the magnetic field is stronger.

*2: Electromagnetic ion cyclotron waves

A type of wave that can exist in a plasma (such as the region of space above Earth's aurora), which vibrates at an ion cyclotron frequency that corresponds to the ion type present (oxygen, helium, hydrogen, etc.).

This is a joint press release by National Institute of Polar Research(NIPR), The University of Tokyo, Nagoya University, Kyoto University, University of Alaska, Fairbanks and University of Southampton.

Media Contact

Public Relations Section, NIPR
81-425-120-655

http://rois.ac.jp 

Public Relations Section, NIPR | EurekAlert!

Further reports about: Electrons cyclotron cyclotron frequency ions magnetic field waves

More articles from Earth Sciences:

nachricht Climate change weakens Walker circulation
20.10.2017 | MARUM - Zentrum für Marine Umweltwissenschaften an der Universität Bremen

nachricht Shallow soils promote savannas in South America
20.10.2017 | Senckenberg Forschungsinstitut und Naturmuseen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>