Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Successful filming of fastest aurora flickering

10.08.2017

The word "aurora" invokes an image of a slowly shimmering curtain of light illuminating the sky. However, when an explosive aurora occurs, known as a breakup, it sometimes leads to another phenomenon called "flickering". When an aurora "flickers" its brightness and motion in some areas begin to change rapidly. This flickering typically oscillates at a 1/10 second period, which is equivalent to the ion cyclotron frequency (*1) of oxygen ions.

Dr. Yoko Fukuda (formally of the Graduate School of Science at The University of Tokyo), Dr. Ryuho Kataoka of the National Institute of Polar Research, and other collaborators conducted a 3 year continuous high-speed imaging observation at Poker Flat Research Range, Alaska, USA, and identified the physics behind the flickering. At the same time, they discovered faster flickerings at speeds of 1/60-1/50 and 1/80 of a second.


This is a flickering aurora. The pale pink area at the center is flickering. Filmed by: Ayumi Y. Bakken, filmed at: Fairbanks, AK, USA; filming date: March 18, 2015; playback speed: 1x.

Credit: Ayumi Y. Bakken


These are high-speed cameras installed at the Neal Davis Science Operations Center at the Poker Flat Research Range of the University of Alaska.

Credit: NIPR

On March 19, 2016, the researchers observed an aurora with the brightness that ranked within the top 5 of all observations since 2014, and was filmed with a 1/160 second shutter speed camera. Detailed analysis of the footage showed a high-speed flickering aurora vibrating with a 1/80 second period taking place during the brightest moment of the breakup.

"High-speed flickering at 1/80 seconds could not be explained by oxygen ions alone. Lighter ions, such as those from hydrogen, are thought to be contributing to the flickering," explains Dr. Fukuda. "The fact that this high-speed flickering was observed at the same time as flickering with a typical 1/10 second period may mean that the flickering aurora was caused by 'electromagnetic ion cyclotron waves' (*2), which are affected by both oxygen and hydrogen ions."

At altitudes of several thousand kilometers, various plasma waves are excited by accelerating electrons and ions. These electrons are what eventually generate auroras. It is assumed that a complex exchange of energy, in which plasma waves are affected by electrons and ions and vice versa, takes place here.

"Astronomical objects with magnetic fields are found throughout the cosmos, with Earth being one of them. On such objects, we observe excitation of plasma waves by accelerating particles, and the interactions between plasma waves and particles, are occurring all over the place," concludes Dr. Kataoka. "However, Earth is the only place we can observe these phenomena in detail. Understanding the behavior of plasma in outer space, and the interactions between plasma waves and particles is a fundamental question in geophysics. We will continue to investigate them in the future."

###

*1: Ion cyclotron frequency

The circular motion of electrons and ions around a magnetic field line is called cyclotron motion. Ion cyclotron frequency is the number of times per second that the electrons and ions circle around the field line. It is inversely proportional to the mass of the electrons and ions--the frequency is greater if the mass is lighter. The frequency also correlates with the strength of the magnetic field; it is greater at lower altitudes where the magnetic field is stronger.

*2: Electromagnetic ion cyclotron waves

A type of wave that can exist in a plasma (such as the region of space above Earth's aurora), which vibrates at an ion cyclotron frequency that corresponds to the ion type present (oxygen, helium, hydrogen, etc.).

This is a joint press release by National Institute of Polar Research(NIPR), The University of Tokyo, Nagoya University, Kyoto University, University of Alaska, Fairbanks and University of Southampton.

Media Contact

Public Relations Section, NIPR
81-425-120-655

http://rois.ac.jp 

Public Relations Section, NIPR | EurekAlert!

Further reports about: Electrons cyclotron cyclotron frequency ions magnetic field waves

More articles from Earth Sciences:

nachricht New analysis casts doubt on predicted decrease in Oklahoma earthquakes
10.08.2017 | University of California - Santa Cruz

nachricht RAVAN CubeSat measures Earth's outgoing energy
10.08.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

Im Focus: Researchers discover Achilles' heel of bacteria

HZI researchers identify a protein in Salmonella that contributes to the assembly of the motility apparatus – a possible target for novel medications

Salmonellae are particularly resistant to antibiotics since they possess not only one, but two membranes that protect them from harmful substances. This makes...

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

 
Latest News

Successful filming of fastest aurora flickering

10.08.2017 | Earth Sciences

New analysis casts doubt on predicted decrease in Oklahoma earthquakes

10.08.2017 | Earth Sciences

Researchers 'count cars' -- literally -- to find a better way to control heavy traffic

10.08.2017 | Transportation and Logistics

VideoLinks
B2B-VideoLinks
More VideoLinks >>>