Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Successful: Cement on Top of Carbon Dioxide

06.07.2015

Final phase of the project on the geological storage of CO2

04.07.2015: Today the final phase of the project on the geological storage of the greenhouse gas carbon dioxide at Ketzin/Havel started with the abandonment of the first of five wellbores.


Abandonment works at the drillsite Ktzi 202 in Ketzin, core of the former cementation (photo: T. Kollersberger, GFZ)

After successful completion of the active injection and the monitoring phase the final project phase termed COMPLETE will now stepwise abandon all wellbores of the pilot site according the regulations set by the German mining law. With this the pilot project on the geological storage of the greenhouse gas CO2, which is operated by the GFZ German Research Centre for Geosciences, now enters its terminal phase.

The abandonment of the wellbore is done in a stepwise manner. The wellbore is completed with successive casings with decreasing diameters. The lower part of the innermost casing is cut at about 459 meter depth and pulled out. Subsequently, the wellbore is cemented up to a depth of 275 meter. After hardening of this first cement bridge, the next bigger casing is cut at about 265 meter depth, pulled out and the wellbore cemented up to the surface.

The well abandonment is completed by deconstruction of the wellbore cellar and its foundation. „The now started work will provide first-hand results on the safe abandonment and closure of a CO2 storage site that are also internationally unique“, explains Axel Liebscher, Head of the Centre for Geological Storage at the GFZ.

What sounds as unspectacular routine work at a first glance, signalises the finalization of a more than ten years lasting scientific and engineering success story. „Together with its precursor projects CO2SINK and CO2MAN the ongoing project COMPLETE closes for the first time the complete life cycle of a CO2 storage site at pilot scale “, Axel Liebscher continues.

„Our research that already started in 2004 provided fundamental knowledge on construction, monitoring, operation and behaviour of a CO2 storage site from the exploration to the closure phase.“ Thereby, the pilot site Ketin comes up with the worldwide most comprehensive surface and subsurface monitoring network for surveillance of the CO2 storage operation.

Liebscher: „We were able to prove that this technology is generally feasible. With fit-to-purpose designed scientific and technical monitoring, CO2 can be safely stored in the subsurface if the geological conditions are suitable.“

After comprehensive pilot survey and the construction of the required infrastructure, a total of about 67,000 t CO2 have been injected at the Ketzin pilot site between June 2008 and August 2013 into porous sandstone at a depth of about 630 to 650 m. In autumn 2013 directly after termination of the injection the observation well Ktzi 202 was partly abandoned with CO2 resistant cement up to a depth of 521 m.

This cementation has been scientifically monitored over more than one and a half year before now the final abandonment of the well started. At the beginning of the final abandonment a three meter long core was drilled and recovered from the first cementation and surveyed on-site.

„Both, the scientific monitoring and survey of the recovered cement core showed, that the cementation performed in autumn 2013 has been successful. We therefore continued with the final abandonment of the well“, Axel Liebscher explains. The remaining four wells at the site will be abandoned and deconstructed in 2016, so that the initial conditions of site will be re-established in 2017.

Further information on the pilot site Ketzin: http://www.co2ketzin.de

Franz Ossing | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ
Further information:
http://www.gfz-potsdam.de/

More articles from Earth Sciences:

nachricht NASA finds newly formed tropical storm lan over open waters
17.10.2017 | NASA/Goddard Space Flight Center

nachricht The melting ice makes the sea around Greenland less saline
16.10.2017 | Aarhus University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Researchers release the brakes on the immune system

18.10.2017 | Health and Medicine

Separating methane and CO2 will become more efficient

18.10.2017 | Life Sciences

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>