Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Successful: Cement on Top of Carbon Dioxide

06.07.2015

Final phase of the project on the geological storage of CO2

04.07.2015: Today the final phase of the project on the geological storage of the greenhouse gas carbon dioxide at Ketzin/Havel started with the abandonment of the first of five wellbores.


Abandonment works at the drillsite Ktzi 202 in Ketzin, core of the former cementation (photo: T. Kollersberger, GFZ)

After successful completion of the active injection and the monitoring phase the final project phase termed COMPLETE will now stepwise abandon all wellbores of the pilot site according the regulations set by the German mining law. With this the pilot project on the geological storage of the greenhouse gas CO2, which is operated by the GFZ German Research Centre for Geosciences, now enters its terminal phase.

The abandonment of the wellbore is done in a stepwise manner. The wellbore is completed with successive casings with decreasing diameters. The lower part of the innermost casing is cut at about 459 meter depth and pulled out. Subsequently, the wellbore is cemented up to a depth of 275 meter. After hardening of this first cement bridge, the next bigger casing is cut at about 265 meter depth, pulled out and the wellbore cemented up to the surface.

The well abandonment is completed by deconstruction of the wellbore cellar and its foundation. „The now started work will provide first-hand results on the safe abandonment and closure of a CO2 storage site that are also internationally unique“, explains Axel Liebscher, Head of the Centre for Geological Storage at the GFZ.

What sounds as unspectacular routine work at a first glance, signalises the finalization of a more than ten years lasting scientific and engineering success story. „Together with its precursor projects CO2SINK and CO2MAN the ongoing project COMPLETE closes for the first time the complete life cycle of a CO2 storage site at pilot scale “, Axel Liebscher continues.

„Our research that already started in 2004 provided fundamental knowledge on construction, monitoring, operation and behaviour of a CO2 storage site from the exploration to the closure phase.“ Thereby, the pilot site Ketin comes up with the worldwide most comprehensive surface and subsurface monitoring network for surveillance of the CO2 storage operation.

Liebscher: „We were able to prove that this technology is generally feasible. With fit-to-purpose designed scientific and technical monitoring, CO2 can be safely stored in the subsurface if the geological conditions are suitable.“

After comprehensive pilot survey and the construction of the required infrastructure, a total of about 67,000 t CO2 have been injected at the Ketzin pilot site between June 2008 and August 2013 into porous sandstone at a depth of about 630 to 650 m. In autumn 2013 directly after termination of the injection the observation well Ktzi 202 was partly abandoned with CO2 resistant cement up to a depth of 521 m.

This cementation has been scientifically monitored over more than one and a half year before now the final abandonment of the well started. At the beginning of the final abandonment a three meter long core was drilled and recovered from the first cementation and surveyed on-site.

„Both, the scientific monitoring and survey of the recovered cement core showed, that the cementation performed in autumn 2013 has been successful. We therefore continued with the final abandonment of the well“, Axel Liebscher explains. The remaining four wells at the site will be abandoned and deconstructed in 2016, so that the initial conditions of site will be re-established in 2017.

Further information on the pilot site Ketzin: http://www.co2ketzin.de

Franz Ossing | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ
Further information:
http://www.gfz-potsdam.de/

More articles from Earth Sciences:

nachricht Devils Hole: Ancient Traces of Climate History
24.05.2017 | Universität Innsbruck

nachricht Supercomputing helps researchers understand Earth's interior
23.05.2017 | University of Illinois College of Liberal Arts & Sciences

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>