Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Subsurface CO2 storage: Risks for Biogeochemical Cycles in the Soil

23.02.2016

A high concentration of carbon dioxide gas in the soil can change the community of organisms living in the soil in the long term. At the same time it changes processes in this ecosystem like the subterranean carbon cycle and carbon storage. These are the research results of a team from the Universities of Jena and Greifswald (Germany), Vienna (Austria), Oslo (Norway), the Max-Planck-Institute for Biogeochemistry and the German Centre for Integrative Biodiversity Research (iDiv), both Germany. The results are published in the first edition of the science journal “Nature Microbiology”.

The more clearly the dimensions of global warming become visible, the greater is the pressure to find possible ways to avoid a further increase in the concentration of carbon dioxide (CO2) in the atmosphere. At the same time the stripping and subterranean storage of this greenhouse gas is being discussed. But what would the impact and the risks of such storage be?


One of the analyzed mofettes that were long considered as being hostile to life.

Photo: Felix Beulig


Felix Beulig of the Friedrich Schiller University Jena examines in winter in Bohemia a mofette.

Photo: Anke Hädrich

The result of what would happen if such storage leaked can be demonstrated by practical experiments. Therefore in the last few years a small valley in the Czech spa triangle became a kind of open air laboratory. Here is why: In this location, carbon dioxide streams in so-called mofettes in large amounts naturally from the depths. The impact of high carbon dioxide concentrations can be studied based on the after-effects of volcanicity, without human beings having to interfere with nature. Health spas like Karlovy Vary (Karlsbad), Mariánské Lázne (Marienbad) or Františkovy Lázně (Franzensbad), and also the spa towns of Bad Elster and Bad Brambach in Saxony owe their existence to the volcanic activity of earlier times.

A team of scientists under the leadership of Prof. Kirsten Küsel from the chair for Aquatic Geomicrobiology of the Friedrich Schiller University Jena (Germany) had a close look at the soil area around a mofette, in which the air consisted of nearly pure carbon dioxide. From 2012 to 2014 the researchers collected samples three times per year. They then compared them with samples from a comparative soil without increased carbon dioxide concentration that was only a few meters away.

“In the soil of the mofette we found significantly more organic material – remains of dead plants and animals, which are normally decomposed by small soil animals and single-cell organisms, bacteria and fungi,“ reports Dr. Felix Beulig of the Friedrich Schiller University Jena, who meanwhile works at the University Aarhus in Denmark. By means of modern chemical and molecular biological methods the researchers were able to discover the mechanism which triggered this change:

The carbon dioxide had changed the living conditions in the soil so much, that the soil animals were excluded and the community of microorganisms had moved towards less manifold but more highly specialised species. Thus the food web in the soil became less efficient in the degradation of organic material which then had accumulated in the ground. Moreover, isotopic measurements were able to show that in the organic soil material large amounts of carbon originated from the earth's mantle. Plants and microorganisms had earlier absorbed this from the leaking carbon dioxide.

So-called 'omics'-methods allowed the researchers to take into account the whole genetic information of all soil creatures (DNA and RNA) in their analysis. Moreover the team could assess which genetic information was actively used at the time. Thus conclusions could be drawn considering those biogeochemical cycles in the soil which influence the storage and the degradation of organic carbon.

“From our results we can draw the conclusion that extremely high concentrations of carbon dioxide will change the food web and the metabolism in the soil in the long term,“ Prof. Kirsten Küsel of the University of Jena and the iDiv explains. The comprehensive analysis with a combination of 'omics'- and biogeochemical methods was also pointed out by Prof. Joshua Schimel from the University of California (USA) in a commentary, which was published in the same edition of “Nature Microbiology”.

The analyzed mofette is an extreme habitat that was long considered as being hostile to life. As early as last year, though, the research team was able to show that strongly adapted organisms quite like it there. The new study offered insights into the complex correlations between communities of organisms and the carbon dynamic in the soil. The results of the study will help to evaluate the environmental risks of the subterranean carbon dioxide storage.

Publications:
Felix Beulig, Tim Urich, Martin Nowak, Susan E. Trumbore, Gerd Gleixner, Gregor D. Gilfillan, Kristine E. Fjelland and Kirsten Küsel (2016): Altered carbon turnover processes and microbiomes in soils under long-term extremely high CO2 exposure. Nature Microbiology Vol. 1, Article number: 15025. 27 January 2016. doi:10.1038/nmicrobiol.2015.25
www.nature.com/articles/nmicrobiol201525

Commentary (“News and Views”):
Joshua Schimmel (2016): Microbial ecology: Linking omics to biogeochemistry. Nature Microbiology Vol. 1, Article number: 15028. 27 January 2016. doi:10.1038/nmicrobiol.2015.28
http://www.nature.com/articles/nmicrobiol201528

Further Information:
Prof. Dr. Kirsten Küsel
Chair of Aquatic Geomicrobiology, Friedrich Schiller University Jena and deputy director of the German Centre for Integrative Biodiversity Research (iDiv)
Tel.: +49-(0)3641-949461
http://www.geomicrobiology.de/
https://www.idiv.de/de/das_zentrum/mitarbeiterinnen/mitarbeiterdetails/eshow/kue...
and
Dr. Felix Beulig
Friedrich Schiller University Jena
meanwhile
Aarhus University (Denmark)
http://bios.au.dk/en/
http://pure.au.dk/portal/en/persons/id%288b62ba4d-0479-4df2-9cf9-8d4c16cba6ec%29...
as well as
Axel Burchardt, Press Office, Friedrich Schiller University Jena
Tel. +49-(0)3641-931030
http://www.uni-jena.de/pressestelle.html
and
Tilo Arnhold/Tabea Turrini, Press Office iDiv
Tel.: +49-(0)341-9733-197, -106
http://www.idiv.de/de/presse/mitarbeiterinnen.html
and
Dr. Eberhard Fritz/Susanne Hejja, PR at MPI-BGC
Tel.: +49-(0)3641-57-6800, -6801
https://www.bgc-jena.mpg.de/index.php/PublicRelations/Overview

Weitere Informationen:

http://www.uni-jena.de/en/Research+News/FM150401_Mofetten_en.html - Life for specialists: in the poisonous breath of sleeping volcanos (PressRelease, Friedrich Schiller University Jena, 01.04.2015)
https://www.ufz.de/index.php?en=35767 - Signs of magmatic activity in Central Europe observed for the first time (PressRelease, UFZ, 22.09.2005)

Axel Burchardt | Friedrich-Schiller-Universität Jena

Further reports about: CO2 CO2 storage carbon dioxide dioxide genetic information organic material

More articles from Earth Sciences:

nachricht Large-Mouthed Fish Was Top Predator After Mass Extinction
26.07.2017 | Universität Zürich

nachricht Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds
25.07.2017 | University of Illinois at Urbana-Champaign

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

Getting closer to porous, light-responsive materials

26.07.2017 | Materials Sciences

Large, distant comets more common than previously thought

26.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>