Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Study Reveals Industrial Aerosol Emissions Has Changed the Relationship Between Temperature and Precipitation in the Northern Tropics


Findings published in Nature Geoscience also indicate a way to make more accurate predictions about future climate trends

An international team of scientists, including Minghua Zhang, Dean and Director of Stony Brook University’s School of Marine and Atmospheric Sciences (SoMAS), has found that man-made aerosol emissions from industrial processes have changed the relationship between temperature and precipitation in the northing tropics. The findings, published early online in Nature Geoscience, may help to indicate the shifts in seasonal rainfall in Central America, which is critical for agriculture in the region.

Professor Minghua Zhang, right, and graduate student Tingyin Xiao, discovered that industrial emissions of aerosols over the last 100 years dramatically changed the atmospheric asymmetry between the North Atlantic and South Atlantic and thus the relationship between temperature and precipitation in the northern tropics.

The team reconstructed rainfall patterns and temperature over 450 years by analyzing the chemical composition of a stalagmite recovered from a cave in Belize in Central America. Stalagmite in the cave was formed through deposition of calcium carbonate and other minerals, which precipitated from mineralized water solutions. These water solutions contain oxygen and carbon.

The team used the oxygen and carbon isotopic ratios from each layer of stalagmite deposits to recover the cumulative signals of climatic and hydrogeological variations over the past 450 years that include rainfall and temperature. Because of the unique seasonal variation of precipitation in Belize, the researchers were able to accurately date the layers of deposits.

Professor Zhang and Tingyin Xiao, a Stony Brook SoMAS graduate student, conducted research that found out-of-phase relationships between temperature and rainfall within the last 100 years in the northern tropics that is contrary to how the atmospheric dynamical system is expected to work.

The stalagmite analysis indicated a shift in the relationship between temperature and rainfall after the industrial revolution. The team then explained that aerosols from industrial emissions have changed the hemispheric contrast of radiative energy between the northern tropics and southern tropics that shifted the relationship between temperature and rainfall.

“We found an unexpected relationship between temperature and rainfall in the northern tropics with a systemic trend of decreasing rainfall,” said Professor Zhang. “This corroborated with what the entire research team found over a much longer period of time based on the cave data.”

Lead author, Dr. Harriet Ridley, from the Department of Earth Sciences at Durham University in the United Kingdom, which led the study, added “The research presents strong evidence that industrial sulphate emissions have shifted this important rainfall belt, particularly over the last 100 years.”

In the paper, titled “Aerosol forcing of the position of the intertropical convergence zone since AD 1550,” the researchers also identified a substantial drying trend from 1850 onwards, coinciding with a steady rise in sulphate aerosols building in the atmosphere as a result of burning fossil fuels during the European and American Industrial Revolution.

Professor Zhang explained that sulphate aerosols from emissions moderated temperatures in the Northern Hemisphere by reflecting the Sun’s radiation. This resulted in the Intertropical Convergence Zone – a tropical rainfall belt near the equator – to be shifted toward the warmer Southern Hemisphere, which leads to drier conditions in the northern tropics.

The international research team included scientists from Durham University, Stony Brook University, the University of New Mexico, Pennsylvania State University, Northern Arizona University, ETH Zurich, and the Potsdam Institute for Climate Impact Research.

The work was funded in part by the National Science Foundation.

Contact Information
Gregory Filiano
Manager of Media Relations, School of Medicine
Phone: 631-444-9343

Gregory Filiano | newswise
Further information:

More articles from Earth Sciences:

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

nachricht UM researchers study vast carbon residue of ocean life
19.10.2016 | University of Miami Rosenstiel School of Marine & Atmospheric Science

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>