Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study offers new insights on hurricane intensity, pollution transport

03.08.2015

Researchers study currents that fuel hurricanes and transport pollutants to coastal beaches

As tropical storm Isaac was gaining momentum toward the Mississippi River in August 2012, University of Miami (UM) researchers were dropping instruments from the sky above to study the ocean conditions beneath the storm. The newly published study showed how a downwelling of warm waters deepened the storm's fuel tank for a rapid intensification toward hurricane status. The results also revealed how hurricane-generated currents and ocean eddies can transport oil and other pollutants to coastal regions.


The figure depicts the upper ocean warming (in red color) observed over the warm rings during the intensification of Isaac.

Credit: Benjamin Jaimes

Tropical storms obtain their energy from the ocean waters below. As a storm moves across the Gulf of Mexico, it may interact with an upwelling of cooler waters from the deeper ocean or, in the case of Isaac, a downwelling inside rings of warm water that separated from a warm-water current, called the Loop Current, that moves through the Gulf of Mexico to join with the Gulf Stream along the U.S. East Coast. As the storm moves forward, ocean temperatures are fueling the storm's intensity.

UM Rosenstiel School of Marine and Atmospheric Science researchers, in collaboration with NOAA's Atlantic Oceanographic and Meteorological Laboratory, deployed a total of 376 airborne sensors during six NOAA hurricane hunter aircraft flights conducted before, during, and after the passage of Isaac over the eastern Gulf of Mexico. The researchers observed a predominant downwelling of water inside these warm-water rings, or eddies, from the Loop Current, which caused its intensification from a tropical storm to a category 1 hurricane just prior to landfall.

"These results underscore the need for forecast models to include upwelling-downwelling responses to improve intensity forecasting and current transport," said Benjamin Jaimes, an assistant scientist at the UM Rosenstiel School.

"Isaac moved over the region of the Deepwater Horizon oil spill where we observed both upwelling and downwelling processes that can re-suspend hydrocarbons lying on the seafloor," said Nick Shay, professor of ocean sciences at the UM Rosenstiel School. "This may have resulted in tar balls being deposited on beaches by hurricane-generated currents."

Tropical storm Isaac gradually intensified in the Gulf of Mexico to reach category 1 hurricane status as an 80 mph (130 km/h) storm, making landfall along the coast of Louisiana. The storm was estimated to have caused $2.39 billion in damage along its track.

###

The study, titled "Enhanced Wind-Driven Downwelling Flow in Warm Oceanic Eddy Features during the Intensification of Tropical Cyclone Isaac (2012): Observations and Theory," was published in the June 2015 issue of the Journal of Physical Oceanography. The study's co-authors include: Benjamin Jaimes and Lynn "Nick" Shay of the UM Rosenstiel School of Marine and Atmospheric Science's Department of Ocean Sciences. BP/Gulf of Mexico Research Initiative to the Deep-C consortium at Florida State University supported the research.

About the University of Miami's Rosenstiel School

The University of Miami is one of the largest private research institutions in the southeastern United States. The University's mission is to provide quality education, attract and retain outstanding students, support the faculty and their research, and build an endowment for University initiatives. Founded in the 1940's, the Rosenstiel School of Marine & Atmospheric Science has grown into one of the world's premier marine and atmospheric research institutions. Offering dynamic interdisciplinary academics, the Rosenstiel School is dedicated to helping communities to better understand the planet, participating in the establishment of environmental policies, and aiding in the improvement of society and quality of life. For more information, visit: http://www.rsmas.miami.edu.

Diana Udel | EurekAlert!

More articles from Earth Sciences:

nachricht GPM sees deadly tornadic storms moving through US Southeast
01.12.2016 | NASA/Goddard Space Flight Center

nachricht Cyclic change within magma reservoirs significantly affects the explosivity of volcanic eruptions
30.11.2016 | Johannes Gutenberg-Universität Mainz

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>