Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study offers new insights on hurricane intensity, pollution transport

03.08.2015

Researchers study currents that fuel hurricanes and transport pollutants to coastal beaches

As tropical storm Isaac was gaining momentum toward the Mississippi River in August 2012, University of Miami (UM) researchers were dropping instruments from the sky above to study the ocean conditions beneath the storm. The newly published study showed how a downwelling of warm waters deepened the storm's fuel tank for a rapid intensification toward hurricane status. The results also revealed how hurricane-generated currents and ocean eddies can transport oil and other pollutants to coastal regions.


The figure depicts the upper ocean warming (in red color) observed over the warm rings during the intensification of Isaac.

Credit: Benjamin Jaimes

Tropical storms obtain their energy from the ocean waters below. As a storm moves across the Gulf of Mexico, it may interact with an upwelling of cooler waters from the deeper ocean or, in the case of Isaac, a downwelling inside rings of warm water that separated from a warm-water current, called the Loop Current, that moves through the Gulf of Mexico to join with the Gulf Stream along the U.S. East Coast. As the storm moves forward, ocean temperatures are fueling the storm's intensity.

UM Rosenstiel School of Marine and Atmospheric Science researchers, in collaboration with NOAA's Atlantic Oceanographic and Meteorological Laboratory, deployed a total of 376 airborne sensors during six NOAA hurricane hunter aircraft flights conducted before, during, and after the passage of Isaac over the eastern Gulf of Mexico. The researchers observed a predominant downwelling of water inside these warm-water rings, or eddies, from the Loop Current, which caused its intensification from a tropical storm to a category 1 hurricane just prior to landfall.

"These results underscore the need for forecast models to include upwelling-downwelling responses to improve intensity forecasting and current transport," said Benjamin Jaimes, an assistant scientist at the UM Rosenstiel School.

"Isaac moved over the region of the Deepwater Horizon oil spill where we observed both upwelling and downwelling processes that can re-suspend hydrocarbons lying on the seafloor," said Nick Shay, professor of ocean sciences at the UM Rosenstiel School. "This may have resulted in tar balls being deposited on beaches by hurricane-generated currents."

Tropical storm Isaac gradually intensified in the Gulf of Mexico to reach category 1 hurricane status as an 80 mph (130 km/h) storm, making landfall along the coast of Louisiana. The storm was estimated to have caused $2.39 billion in damage along its track.

###

The study, titled "Enhanced Wind-Driven Downwelling Flow in Warm Oceanic Eddy Features during the Intensification of Tropical Cyclone Isaac (2012): Observations and Theory," was published in the June 2015 issue of the Journal of Physical Oceanography. The study's co-authors include: Benjamin Jaimes and Lynn "Nick" Shay of the UM Rosenstiel School of Marine and Atmospheric Science's Department of Ocean Sciences. BP/Gulf of Mexico Research Initiative to the Deep-C consortium at Florida State University supported the research.

About the University of Miami's Rosenstiel School

The University of Miami is one of the largest private research institutions in the southeastern United States. The University's mission is to provide quality education, attract and retain outstanding students, support the faculty and their research, and build an endowment for University initiatives. Founded in the 1940's, the Rosenstiel School of Marine & Atmospheric Science has grown into one of the world's premier marine and atmospheric research institutions. Offering dynamic interdisciplinary academics, the Rosenstiel School is dedicated to helping communities to better understand the planet, participating in the establishment of environmental policies, and aiding in the improvement of society and quality of life. For more information, visit: http://www.rsmas.miami.edu.

Diana Udel | EurekAlert!

More articles from Earth Sciences:

nachricht More than 100 years of flooding and erosion in 1 event
28.03.2017 | Geological Society of America

nachricht Satellites reveal bird habitat loss in California
28.03.2017 | Duke University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>