Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study of cloud cover in tropical Pacific reveals future climate changes

05.11.2015

UM Rosenstiel School researchers find new evidence for weakening of Walker circulation

A new analysis using changes in cloud cover over the tropical Indo-Pacific Ocean showed that a weakening of a major atmospheric circulation system over the last century is due, in part, to increased greenhouse gas emissions.


Walker Circulation is illustrated.

Credit: NOAA Climate.gov

The findings from researchers at the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science provide new evidence that climate change in the tropical Pacific will result in changes in rainfall patterns in the region and amplify warming near the equator in the future.

"Our findings show that an increasing concentration of greenhouse gases leads to significant changes in atmospheric circulation and tropical rainfall patterns," said Katinka Bellomo, an alumna of the UM Rosenstiel School. "This study demonstrates that we can predict these changes in the Walker circulation from changes in cloud cover."

The UM Rosenstiel School researchers used historical observations of cloud cover as a proxy for wind velocity in climate models to analyze the Walker circulation, the atmospheric air flow and heat distribution in the tropic Pacific region that affects patterns of tropical rainfall.

Their findings revealed a weakening and eastward shift of the Walker circulation over the last century due to greenhouse gas emissions. The analysis showed that changes in cloud cover can serve as a proxy in climate models for wind velocity in the atmosphere, which cannot be directly measured.

"This study makes innovative use of a decades old-dataset," said Amy Clement, professor of atmospheric science at the UM Rosenstiel School. "It is impressive that visual observations from the decks of ships transiting the Pacific Ocean over a half-century can tell us something so fundamental about climate change."

This new information can be incorporated into current climate models to predict future changes in the magnitude and pattern of the Walker Circulation due to increased greenhouse gas emissions. The study suggests that rainfall will decrease over Indonesia and in the western Pacific and increase over the central Pacific Ocean.

###

The study, titled "Evidence for weakening of the Walker circulation from cloud observations," was published in the journal Geophysical Research Letters. The study's authors include: Katinka Bellomo and Amy C. Clement of the UM Rosenstiel School. The work was supported by grants from National Science Foundation Climate and Large Scaled Dynamics, National Oceanic and Atmospheric Administration's Climate Program Office, grant # NA10OAR4310204 and Department of Energy Biological and Environmental Research, grant #DESC0004897. The publication can be accessed here: http://onlinelibrary.wiley.com/doi/10.1002/2015GL065463/abstract

About the University of Miami's Rosenstiel School

The University of Miami is one of the largest private research institutions in the southeastern United States. The University's mission is to provide quality education, attract and retain outstanding students, support the faculty and their research, and build an endowment for University initiatives. Founded in the 1940's, the Rosenstiel School of Marine & Atmospheric Science has grown into one of the world's premier marine and atmospheric research institutions. Offering dynamic interdisciplinary academics, the Rosenstiel School is dedicated to helping communities to better understand the planet, participating in the establishment of environmental policies, and aiding in the improvement of society and quality of life. For more information, visit: http://www.rsmas.miami.edu.

Diana Udel | EurekAlert!

More articles from Earth Sciences:

nachricht NASA eyes Pineapple Express soaking California
24.02.2017 | NASA/Goddard Space Flight Center

nachricht 'Quartz' crystals at the Earth's core power its magnetic field
23.02.2017 | Tokyo Institute of Technology

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>