Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study finds link between 2015 melting Greenland ice, faster Arctic warming

10.06.2016

A new study provides the first evidence that links melting ice in Greenland to a phenomenon known as Arctic amplification--faster warming of the Arctic compared to the rest of the Northern Hemisphere as sea ice disappears.

The findings show that the predicted effects of Arctic amplification, as described in previous studies, occurred over northern Greenland during summer 2015, including a northern swing of the jet stream that reached latitudes never before recorded in Greenland at that time of year.


Researchers including the University of Georgia's Thomas Mote measure meltwater runoff from the ice sheet margin in Greenland during summer 2013.

Courtesy of Thomas Mote/University of Georgia

The study, published today in Nature Communications, included researchers from University of Georgia, Columbia University, University of Liege, City College of New York, University of Leeds and the University of Sheffield.

The Greenland ice sheet, Earth's second largest after Antarctica, holds enough ice that if it were to melt entirely, it would raise average global sea level by about 7 meters, or almost 23 feet. Learning more about the drivers of melting is essential to discerning how much sea level will rise and by how much in the future and how Greenland's freshwater runoff will affect ocean circulation and ecology.

"During the past two decades, we have seen increasing melt from the Greenland ice sheet, culminating in a very large melt event in the summer of 2012," said study co-author Thomas Mote, a University of Georgia professor in the department of geography.

"Last year was unique in the extensive melting that occurred on the northern reaches of the ice sheet, an area that usually has rather modest melt compared to southern Greenland. We identified an unusual configuration of the jet stream toward northern Greenland that led to this melt pattern."

Rising global temperatures are melting Arctic sea ice, leaving dark open water that absorbs more solar radiation and causes faster warming in the Arctic. While Arctic amplification is well documented, its effects on the atmosphere are still debated. One theory among scientists is that the shrinking temperature difference between the Arctic and the temperate zone will lead to a slowing of the jet stream. Normally, when the jet stream circles the northern latitudes, the frigid polar air is separated from warmer air in the south. Slower winds, however, could create wilder swings that would allow warm, humid air to penetrate farther north.

"The Greenland ice sheet is one of the most important contributors to sea level rise since 2000," Mote said. "Moreover, some recent work has shown how meltwater runoff can affect ocean productivity and circulation in southern Greenland. However, we don't yet have a good understanding of how increased melt in the north might affect surrounding oceans and the dynamics of the ice sheet."

Northwest Greenland's summer melt started last June when a high-pressure ridge squeezed off from the jet stream and moved westward over Greenland and hovered over the Arctic Ocean, the study shows. Clear skies and warmer weather in northern Greenland from this high-pressure system resulted in record setting surface temperature and meltwater runoff in the northwest. With less summer snow falling and melting underway, northern Greenland's reflectivity also decreased and the water absorbed more heat from the sun, further increasing melting.

Northern Greenland's wind patterns also changed from the usual west to east direction to east to west. Only two other years on record show east to west wind averages in July and both were slower. Further, the jet stream's northernmost ridge swung nearly 2 degrees farther north than the previous July record, set in 2009.

The same atmospheric pattern had a different impact on southern Greenland, where new melting records have been set over the past decade. The south saw more snow during summer 2015 and less melting than previous years.

"How much and where Greenland melts can change depends on how things change elsewhere on Earth," said the study's lead author Marco Tedesco, a research professor at Columbia University's Lamont-Doherty Earth Observatory and adjunct scientist at NASA Goddard Institute for Space Studies. "If loss of sea ice is driving changes in the jet stream, the jet stream is changing Greenland, and this, in turn, has an impact on the Arctic system as well as the climate. It's a system, it is strongly interconnected, and we have to approach it as such."

The authors don't fully confirm Arctic amplification as the cause of the warming, but say the results of their study fit the description of possible effects as predicted by other researchers. Whether the patterns seen in 2015 will continue in the future is uncertain. This spring, Arctic sea ice set another record low for its maximum extent for the year.

"Greenland also experienced early season melt in early April of this year comparable to April 2012. Record-setting melt occurred later that summer, but it is too early to tell whether the same will hold true in 2016," Mote said.

###

Additional co-authors are Xavier Fettweis of University of Liege; Jeyavinoth Jeyaratnam, James Booth and Rajashree Datta of City College of New York; and Kate Briggs of University of Leeds.

The study, "Arctic cut-off high drives the poleward shift of a new Greenland melting record," was supported by funding from NASA's Interdisciplinary Data Science Program, NASA's Cryosphere Program and the National Science Foundation and is available at http://www.nature.com/ncomms/2016/160609/ncomms11723/full/ncomms11723.html.

Media Contact

Stephanie Schupska
schupska@uga.edu
706-542-6927

 @universityofga

http://www.uga.edu 

Stephanie Schupska | EurekAlert!

More articles from Earth Sciences:

nachricht By saving cost and energy, the lighting revolution may increase light pollution
23.11.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

nachricht Frictional Heat Powers Hydrothermal Activity on Enceladus
23.11.2017 | Universität Heidelberg

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Underwater acoustic localization of marine mammals and vehicles

23.11.2017 | Information Technology

Enhancing the quantum sensing capabilities of diamond

23.11.2017 | Physics and Astronomy

Meadows beat out shrubs when it comes to storing carbon

23.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>