Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study finds high melt rates on Antarctica's most stable ice shelf

15.01.2016

Scripps-led study finds melting rates 25 times higher than expected

A new Scripps Institution of Oceanography at UC San Diego-led study measured a melt rate that is 25 times higher than expected on one part of the Ross Ice Shelf. The study suggests that high, localized melt rates such as this one on Antarctica's largest and most stable ice shelf are normal and keep Antarctica's ice sheets in balance.


This is Scripps Oceanography postdoctoral researcher Matt Siegfried at the Whillans Ice Stream field camp on Antarctica.

Credit: Scripps Oceanography/Oliver Marsh

The Ross Ice Shelf, a floating body of land ice the size of France jutting out from the Antarctic mainland, continuously melts and grows in response to changes to both the ice sheet feeding it and the warmer Southern Ocean waters beneath it.

For six weeks the researchers collected radar data to map changes in ice shelf thickness to understand the processes that contribute to melting at its base. The findings revealed dramatic changes in melt rate within less than a mile.

The highest melting rates of more than 20 meters (66 feet) per year are thought to contribute to the rapid formation of channels at the base of the ice shelf, which can result from fresh water flowing out from lakes under the West Antarctica ice sheet. Shifts in subglacial drainage patterns change the location of these basal channels, which could impact the ice shelf's stability by unevenly distributing the melting at the base.

"The highest melt rates are all clustered at the start of a developing ice shelf channel," said Scripps alumnus Oliver Marsh, a postdoctoral researcher at the University of Canterbury and lead author of the study. "The location of the melting strengthens the idea that freshwater from the local subglacial drainage system is responsible for the evolving ice shelf features."

The study, published in the American Geophysical Union's Geophysical Research Letters, is the first to document fine-scale changes taking place on the ice shelf that help maintain its natural balance with the surrounding ocean waters.

"It's just as important to study the places that aren't changing as the ones that are," said Scripps glaciologist Helen Amanda Fricker, a co-author of the study. "We need to understand what is causing the melting in order to predict how these places may change in the future."

Melting of ice shelves does not directly contribute to sea-level rise, but instead they hold back water frozen in the larger ice sheet that will cause sea levels to rise. The study helps researchers understand the oceanographic processes necessary to better predict future sea-level rise from the melting of ice sheets due to climate change.

"Below the Ross Sea is one of the most remote parts of the ocean floor, and is largely unmapped," said Matt Siegfried, Scripps postdoctoral researcher and a co-author of the study. "This research is helping us better understand the interactions between the ice sheet and the ocean in this remote region on Earth."

According to the researchers, more sustained, long-term measurements are necessary to determine the exact cause of the high melt rate and how it changes over seasonal or annual timescales.

###

The study, part of the National Science Foundation-funded Whillans Ice Stream Subglacial Access Research Drilling project (WISSARD), was supported by UC San Diego's John Dove Isaacs Chair in Natural Philosophy awarded to Fricker.

Scripps Institution of Oceanography: scripps.ucsd.edu

Scripps News: scrippsnews.ucsd.edu

About Scripps Institution of Oceanography

Scripps Institution of Oceanography at the University of California, San Diego, is one of the oldest, largest, and most important centers for global science research and education in the world. Now in its second century of discovery, the scientific scope of the institution has grown to include biological, physical, chemical, geological, geophysical, and atmospheric studies of the earth as a system. Hundreds of research programs covering a wide range of scientific areas are under way today on every continent and in every ocean. The institution has a staff of more than 1,400 and annual expenditures of approximately $195 million from federal, state, and private sources. Scripps operates oceanographic research vessels recognized worldwide for their outstanding capabilities. Equipped with innovative instruments for ocean exploration, these ships constitute mobile laboratories and observatories that serve students and researchers from institutions throughout the world. Birch Aquarium at Scripps serves as the interpretive center of the institution and showcases Scripps research and a diverse array of marine life through exhibits and programming for more than 430,000 visitors each year. Learn more at scripps.ucsd.edu and follow us at: Facebook | Twitter | Instagram.

About UC San Diego

The University of California, San Diego is a student-centered, research-focused, service-oriented public institution that provides opportunity for all. Recognized as one of the top 15 research universities worldwide and born of a culture of collaboration, UC San Diego sparks discoveries that advance society, drive economic growth and positively impact the world. Our students, who learn from Nobel laureates, MacArthur Fellows and National Academy members, are committed to public service. For the sixth consecutive year, UC San Diego has been ranked first in the nation based on research, civic engagement and social mobility. We are one campus with multiple pillars of excellence, a top ten public university that is transforming lives, shaping new disciplines and advancing the frontiers of knowledge. Learn more at http://www.ucsd.edu.

Media Contact

Mario Aguilera
scrippsnews@ucsd.edu
858-534-3624

 @UCSanDiego

http://www.ucsd.edu 

Mario Aguilera | EurekAlert!

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-assembling nano inks form conductive and transparent grids during imprint

Transparent electronics devices are present in today’s thin film displays, solar cells, and touchscreens. The future will bring flexible versions of such devices. Their production requires printable materials that are transparent and remain highly conductive even when deformed. Researchers at INM – Leibniz Institute for New Materials have combined a new self-assembling nano ink with an imprint process to create flexible conductive grids with a resolution below one micrometer.

To print the grids, an ink of gold nanowires is applied to a substrate. A structured stamp is pressed on the substrate and forces the ink into a pattern. “The...

Im Focus: The Glowing Brain

A new Fraunhofer MEVIS method conveys medical interrelationships quickly and intuitively with innovative visualization technology

On the monitor, a brain spins slowly and can be examined from every angle. Suddenly, some sections start glowing, first on the side and then the entire back of...

Im Focus: Newly discovered material property may lead to high temp superconductivity

Researchers at the U.S. Department of Energy's (DOE) Ames Laboratory have discovered an unusual property of purple bronze that may point to new ways to achieve high temperature superconductivity.

While studying purple bronze, a molybdenum oxide, researchers discovered an unconventional charge density wave on its surface.

Im Focus: Mapping electromagnetic waveforms

Munich Physicists have developed a novel electron microscope that can visualize electromagnetic fields oscillating at frequencies of billions of cycles per second.

Temporally varying electromagnetic fields are the driving force behind the whole of electronics. Their polarities can change at mind-bogglingly fast rates, and...

Im Focus: Continental tug-of-war - until the rope snaps

Breakup of continents with two speed: Continents initially stretch very slowly along the future splitting zone, but then move apart very quickly before the onset of rupture. The final speed can be up to 20 times faster than in the first, slow extension phase.phases

Present-day continents were shaped hundreds of millions of years ago as the supercontinent Pangaea broke apart. Derived from Pangaea’s main fragments Gondwana...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

GROWING IN CITIES - Interdisciplinary Perspectives on Urban Gardening

15.07.2016 | Event News

SIGGRAPH2016 Computer Graphics Interactive Techniques, 24-28 July, Anaheim, California

15.07.2016 | Event News

Partner countries of FAIR accelerator meet in Darmstadt and approve developments

11.07.2016 | Event News

 
Latest News

World first demo of labyrinth magnetic-domain-optical Q-switched laser

28.07.2016 | Information Technology

New material could advance superconductivity

28.07.2016 | Materials Sciences

CO2 can be stored underground for 10 times the length needed to avoid climatic impact

28.07.2016 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>