Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study finds high melt rates on Antarctica's most stable ice shelf

15.01.2016

Scripps-led study finds melting rates 25 times higher than expected

A new Scripps Institution of Oceanography at UC San Diego-led study measured a melt rate that is 25 times higher than expected on one part of the Ross Ice Shelf. The study suggests that high, localized melt rates such as this one on Antarctica's largest and most stable ice shelf are normal and keep Antarctica's ice sheets in balance.


This is Scripps Oceanography postdoctoral researcher Matt Siegfried at the Whillans Ice Stream field camp on Antarctica.

Credit: Scripps Oceanography/Oliver Marsh

The Ross Ice Shelf, a floating body of land ice the size of France jutting out from the Antarctic mainland, continuously melts and grows in response to changes to both the ice sheet feeding it and the warmer Southern Ocean waters beneath it.

For six weeks the researchers collected radar data to map changes in ice shelf thickness to understand the processes that contribute to melting at its base. The findings revealed dramatic changes in melt rate within less than a mile.

The highest melting rates of more than 20 meters (66 feet) per year are thought to contribute to the rapid formation of channels at the base of the ice shelf, which can result from fresh water flowing out from lakes under the West Antarctica ice sheet. Shifts in subglacial drainage patterns change the location of these basal channels, which could impact the ice shelf's stability by unevenly distributing the melting at the base.

"The highest melt rates are all clustered at the start of a developing ice shelf channel," said Scripps alumnus Oliver Marsh, a postdoctoral researcher at the University of Canterbury and lead author of the study. "The location of the melting strengthens the idea that freshwater from the local subglacial drainage system is responsible for the evolving ice shelf features."

The study, published in the American Geophysical Union's Geophysical Research Letters, is the first to document fine-scale changes taking place on the ice shelf that help maintain its natural balance with the surrounding ocean waters.

"It's just as important to study the places that aren't changing as the ones that are," said Scripps glaciologist Helen Amanda Fricker, a co-author of the study. "We need to understand what is causing the melting in order to predict how these places may change in the future."

Melting of ice shelves does not directly contribute to sea-level rise, but instead they hold back water frozen in the larger ice sheet that will cause sea levels to rise. The study helps researchers understand the oceanographic processes necessary to better predict future sea-level rise from the melting of ice sheets due to climate change.

"Below the Ross Sea is one of the most remote parts of the ocean floor, and is largely unmapped," said Matt Siegfried, Scripps postdoctoral researcher and a co-author of the study. "This research is helping us better understand the interactions between the ice sheet and the ocean in this remote region on Earth."

According to the researchers, more sustained, long-term measurements are necessary to determine the exact cause of the high melt rate and how it changes over seasonal or annual timescales.

###

The study, part of the National Science Foundation-funded Whillans Ice Stream Subglacial Access Research Drilling project (WISSARD), was supported by UC San Diego's John Dove Isaacs Chair in Natural Philosophy awarded to Fricker.

Scripps Institution of Oceanography: scripps.ucsd.edu

Scripps News: scrippsnews.ucsd.edu

About Scripps Institution of Oceanography

Scripps Institution of Oceanography at the University of California, San Diego, is one of the oldest, largest, and most important centers for global science research and education in the world. Now in its second century of discovery, the scientific scope of the institution has grown to include biological, physical, chemical, geological, geophysical, and atmospheric studies of the earth as a system. Hundreds of research programs covering a wide range of scientific areas are under way today on every continent and in every ocean. The institution has a staff of more than 1,400 and annual expenditures of approximately $195 million from federal, state, and private sources. Scripps operates oceanographic research vessels recognized worldwide for their outstanding capabilities. Equipped with innovative instruments for ocean exploration, these ships constitute mobile laboratories and observatories that serve students and researchers from institutions throughout the world. Birch Aquarium at Scripps serves as the interpretive center of the institution and showcases Scripps research and a diverse array of marine life through exhibits and programming for more than 430,000 visitors each year. Learn more at scripps.ucsd.edu and follow us at: Facebook | Twitter | Instagram.

About UC San Diego

The University of California, San Diego is a student-centered, research-focused, service-oriented public institution that provides opportunity for all. Recognized as one of the top 15 research universities worldwide and born of a culture of collaboration, UC San Diego sparks discoveries that advance society, drive economic growth and positively impact the world. Our students, who learn from Nobel laureates, MacArthur Fellows and National Academy members, are committed to public service. For the sixth consecutive year, UC San Diego has been ranked first in the nation based on research, civic engagement and social mobility. We are one campus with multiple pillars of excellence, a top ten public university that is transforming lives, shaping new disciplines and advancing the frontiers of knowledge. Learn more at http://www.ucsd.edu.

Media Contact

Mario Aguilera
scrippsnews@ucsd.edu
858-534-3624

 @UCSanDiego

http://www.ucsd.edu 

Mario Aguilera | EurekAlert!

More articles from Earth Sciences:

nachricht In times of climate change: What a lake’s colour can tell about its condition
21.09.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?
21.09.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>