Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study: Earth's carbon points to planetary smashup

06.09.2016

Element ratios suggest Earth collided with Mercury-like planet

Research by Rice University Earth scientists suggests that virtually all of Earth's life-giving carbon could have come from a collision about 4.4 billion years ago between Earth and an embryonic planet similar to Mercury.


A schematic depiction of early Earth's merger with an embryonic planet similar to Mercury, a scenario supported by new high-pressure, high-temperature experiments at Rice University. Magma ocean processes could lead planetary embryos to develop silicon- or sulfur-rich metallic cores and carbon-rich outer layers. If Earth merged with such a planet early in its history, it could explain how Earth acquired its carbon and sulfur.

Credit: Rajdeep Dasgupta

In a new study this week in Nature Geoscience, Rice petrologist Rajdeep Dasgupta and colleagues offer a new answer to a long-debated geological question: How did carbon-based life develop on Earth, given that most of the planet's carbon should have either boiled away in the planet's earliest days or become locked in Earth's core?

"The challenge is to explain the origin of the volatile elements like carbon that remain outside the core in the mantle portion of our planet," said Dasgupta, who co-authored the study with lead author and Rice postdoctoral researcher Yuan Li, Rice research scientist Kyusei Tsuno and Woods Hole Oceanographic Institute colleagues Brian Monteleone and Nobumichi Shimizu.

Dasgupta's lab specializes in recreating the high-pressure and high-temperature conditions that exist deep inside Earth and other rocky planets. His team squeezes rocks in hydraulic presses that can simulate conditions about 250 miles below Earth's surface or at the core-mantle boundary of smaller planets like Mercury.

"Even before this paper, we had published several studies that showed that even if carbon did not vaporize into space when the planet was largely molten, it would end up in the metallic core of our planet, because the iron-rich alloys there have a strong affinity for carbon," Dasgupta said.

Earth's core, which is mostly iron, makes up about one-third of the planet's mass. Earth's silicate mantle accounts for the other two-thirds and extends more than 1,500 miles below Earth's surface. Earth's crust and atmosphere are so thin that they account for less than 1 percent of the planet's mass. The mantle, atmosphere and crust constantly exchange elements, including the volatile elements needed for life.

If Earth's initial allotment of carbon boiled away into space or got stuck in the core, where did the carbon in the mantle and biosphere come from?

"One popular idea has been that volatile elements like carbon, sulfur, nitrogen and hydrogen were added after Earth's core finished forming," said Li, who is now a staff scientist at Guangzhou Institute of Geochemistry, Chinese Academy of Sciences. "Any of those elements that fell to Earth in meteorites and comets more than about 100 million years after the solar system formed could have avoided the intense heat of the magma ocean that covered Earth up to that point.

"The problem with that idea is that while it can account for the abundance of many of these elements, there are no known meteorites that would produce the ratio of volatile elements in the silicate portion of our planet," Li said.

In late 2013, Dasgupta's team began thinking about unconventional ways to address the issue of volatiles and core composition, and they decided to conduct experiments to gauge how sulfur or silicon might alter the affinity of iron for carbon. The idea didn't come from Earth studies, but from some of Earth's planetary neighbors.

"We thought we definitely needed to break away from the conventional core composition of just iron and nickel and carbon," Dasgupta recalled. "So we began exploring very sulfur-rich and silicon-rich alloys, in part because the core of Mars is thought to be sulfur-rich and the core of Mercury is thought to be relatively silicon-rich.

"It was a compositional spectrum that seemed relevant, if not for our own planet, then definitely in the scheme of all the terrestrial planetary bodies that we have in our solar system," he said.

The experiments revealed that carbon could be excluded from the core -- and relegated to the silicate mantle -- if the iron alloys in the core were rich in either silicon or sulfur.

"The key data revealed how the partitioning of carbon between the metallic and silicate portions of terrestrial planets varies as a function of the variables like temperature, pressure and sulfur or silicon content," Li said.

The team mapped out the relative concentrations of carbon that would arise under various levels of sulfur and silicon enrichment, and the researchers compared those concentrations to the known volatiles in Earth's silicate mantle.

"One scenario that explains the carbon-to-sulfur ratio and carbon abundance is that an embryonic planet like Mercury, which had already formed a silicon-rich core, collided with and was absorbed by Earth," Dasgupta said. "Because it's a massive body, the dynamics could work in a way that the core of that planet would go directly to the core of our planet, and the carbon-rich mantle would mix with Earth's mantle.

"In this paper, we focused on carbon and sulfur," he said. "Much more work will need to be done to reconcile all of the volatile elements, but at least in terms of the carbon-sulfur abundances and the carbon-sulfur ratio, we find this scenario could explain Earth's present carbon and sulfur budgets."

###

The research was supported by NASA and the National Science Foundation.

High-resolution IMAGES are available for download at:

http://news.rice.edu/files/2016/08/0822_SMASH-main2-lg-sgtksg.jpg
CAPTION: The ratio of volatile elements in Earth's mantle suggests that virtually all of the planet's life-giving carbon came from a collision with an embryonic planet approximately 100 million years after Earth formed.
CREDIT: A. Passwaters/Rice University based on original courtesy of NASA/JPL-Caltech at http://www.nasa.gov/multimedia/imagegallery/image_feature_1454.html

http://news.rice.edu/files/2016/08/0822_SMASH-nosym-lg-1eqd9df.jpg
CAPTION: A schematic depiction of early Earth's merger with an embryonic planet similar to Mercury, a scenario supported by new high-pressure, high-temperature experiments at Rice University. Magma ocean processes could lead planetary embryos to develop silicon- or sulfur-rich metallic cores and carbon-rich outer layers. If Earth merged with such a planet early in its history, it could explain how Earth acquired its carbon and sulfur. (Figure courtesy of Rajdeep Dasgupta)

http://news.rice.edu/files/2016/08/0822_SMASH-RajDas11-lg-1rsr8pa.jpg
CAPTION: Rajdeep Dasgupta (Photo by Jeff Fitlow/Rice University)

http://news.rice.edu/files/2016/08/0822_SMASH-yuan-lg-ry9jbb.jpg
CAPTION: Yuan Li (Photo courtesy of Kyusei Tsuno)

The DOI of the Nature Geosciences paper is: 10.1038/ngeo2801

A copy of the paper is available at: http://dx.doi.org/10.1038/ngeo2801

More information is available at:

Experimental Petrology Rice Team

Similar research from Rice:

Magma in mantle has deep impact -- Jan. 9, 2013

Earth scientist Dasgupta lands NSF CAREER Award -- March 21, 2013

Going deep to study long-term climate evolution -- Oct. 31, 2013

Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,910 undergraduates and 2,809 graduate students, Rice's undergraduate student-to-faculty ratio is 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked No. 1 for best quality of life and for lots of race/class interaction by the Princeton Review. Rice is also rated as a best value among private universities by Kiplinger's Personal Finance. To read "What they're saying about Rice," go to http://tinyurl.com/RiceUniversityoverview.

Media Contact

Jade Boyd
jadeboyd@rice.edu
713-348-6778

 @RiceUNews

http://news.rice.edu 

Jade Boyd | EurekAlert!

Further reports about: meteorites silicate mantle solar system

More articles from Earth Sciences:

nachricht Hurricane Harvey: Dutch-Texan research shows most fatalities occurred outside flood zones
19.04.2018 | European Geosciences Union

nachricht Root exudates affect soil stability, water repellency
18.04.2018 | American Society of Agronomy

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>