Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017

Geoscientists have long puzzled over the mechanism that created the Tibetan Plateau, but a new study finds that the landform's history may be controlled primarily by the strength of the tectonic plates whose collision prompted its uplift. Given that the region is one of the most seismically active areas in the world, understanding the plateau's geologic history could give scientists insight to modern day earthquake activity.

The new findings are published in the journal Nature Communications.

Even from space, the Tibetan Plateau appears huge. The massive highland, formed by the convergence of two continental plates, India and Asia, dwarfs other mountain ranges in height and breadth. Most other mountain ranges appear like narrow scars of raised flesh, while the Himalaya Plateau looks like a broad, asymmetrical scab surrounded by craggy peaks.


A topographic map of the area around the Tibetan Plateau, left, and the map view of the composite strong and weak Asian plate model, right. The composite plate strength model -- with the Asian plate stronger in the west (Tarim Basin) and weaker to the east -- results in a topography that is similar to what exists today.

Graphic courtesy of Lin Chen

"The asymmetric shape and complex subsurface structure of the Tibetan Plateau make its formation one of the most significant outstanding questions in the study of plate tectonics today," said University of Illinois geology professor and study co-author Lijun Liu.

In the classic model of Tibetan Plateau formation, a fast-moving Indian continental plate collides head-on with the relatively stationary Asian plate about 50 million years ago. The convergence is likely to have caused the Earth's crust to bunch up into the massive pile known as the Himalaya Mountains and Tibetan Plateau seen today, but this does not explain why the plateau is asymmetrical, Liu Said.

"The Tibetan Plateau is not uniformly wide," said Lin Chen, the lead author from the Chinese Academy of Sciences. "The western side is very narrow and the eastern side is very broad -- something that many past models have failed to explain."Many of those past models have focused on the surface geology of the actual plateau region, Liu said, but the real story might be found further down, where the Asian and Indian plates meet.

"There is a huge change in topography on the plateau, or the Asian plate, while the landform and moving speed of the Indian plate along the collision zone are essentially the same from west to east," Liu said. "Why does the Asian plate vary so much?"

To address this question, Liu and his co-authors looked at what happens when tectonic plates made from rocks of different strengths collide. A series of 3-D computational continental collision models were used to test this idea.

"We looked at two scenarios -- a weak Asian plate and a strong Asian plate," said Liu. "We kept the incoming Indian plate strong in both models."

When the researchers let the models run, they found that a strong Asian plate scenario resulted in a narrow plateau. The weak Asian plate model produced a broad plateau, like what is seen today.

"We then ran a third scenario which is a composite of the strong and weak Asian plate models," said Liu. "An Asian plate with a strong western side and weak eastern side results in an orientation very similar to what we see today."

This model, besides predicting the surface topography, also helps explain some of the complex subsurface structure seen using seismic observation techniques.

"It is exciting to see that such a simple model leads to something close to what we observe today," Liu said. "The location of modern earthquake activity and land movement corresponds to what we predict with the model, as well."

###

The Strategic Priority Research Program (B) of the Chinese Academy of Sciences, the National Key Research and Development Project and the National Natural Science Foundation of China supported this study.

Editor's notes:

To reach Lijun Liu, call 217-300-0378; ljliu@illinois.edu

The paper "Crustal rheology controls on the Tibetan plateau formation during India-Asia convergence" is available online and from the U. of I. News Bureau. DOI: 10.1038/ncomms15992

Media Contact

Lois E Yoksoulian
leyok@illinois.edu
217-244-2788

 @NewsAtIllinois

http://www.illinois.edu 

Lois E Yoksoulian | EurekAlert!

Further reports about: Tibetan plate tectonics surface topography tectonic plates topography

More articles from Earth Sciences:

nachricht Monitoring lava lake levels in Congo volcano
16.05.2018 | Seismological Society of America

nachricht Ice stream draining Greenland Ice Sheet sensitive to changes over past 45,000 years
14.05.2018 | Oregon State University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>