Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Southern Ocean: Iron fertilization might be less efficient for deep-ocean carbon dioxide storage

11.11.2014

A new study performed by a team of international scientists reveals that a complex ecosystem response to iron fertilization in the Southern Ocean might reduce the efficiency of biological carbon pump in transporting carbon dioxide into the deep ocean.

Lead author Dr. Ian Salter from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI), and a team of international collaborators, discovered that iron fertilization significantly promotes the growth of shelled organisms that feed on phytoplankton.


The Southern Ocean plays an important role in the exchange of carbon dioxide between the atmosphere and the ocean. Photo: Frank Rödel, Alfred Wegener Institute

These organisms produce carbon dioxide when building their calcareous shells. In a naturally iron-fertilized system in the Southern Ocean the growth and sinking of these shelled grazers reduces deep-ocean storage of carbon dioxide by up to 30 per cent.

Ignoring the response of these organisms could result in an overestimate of the marine carbon dioxide storage capacity resulting from ocean iron fertilization, a potential strategy for the mitigation of climate change. The study is published by the scientific journal nature geoscience.

The Southern Ocean plays an important role in the exchange of carbon dioxide between the atmosphere and the ocean. One aspect of this is the growth of phytoplankton, which acts as a natural sponge for carbon dioxide, drawing the troublesome greenhouse gas from the atmosphere into the sea. When these plankton die they can sink to the bottom of the ocean and store some of the carbon dioxide they have absorbed, a process scientists call the “biological carbon pump”.

Although many areas of the Southern Ocean are rich in nutrients, they often lack iron, which limits phytoplankton growth. An important idea in oceanography is that adding iron to the Southern Ocean could stimulate phytoplankton growth and the biological carbon pump. Some scientists believe that this process can partly explain cycles in atmospheric carbon dioxide over Earth’s recent history and it has also been widely debated as a mitigation strategy for climate change.

In two previous studies carried out in the last five years it has been shown that iron fertilization of the Southern Ocean can export carbon dioxide to the deep-sea. “However, to understand the net storage of carbon dioxide in the ocean interior, sinking phytoplankton are only one part of the story”, explains Dr. Ian Salter from the Alfred Wegener Institute. “These phytoplankton can be a food source for certain types of planktonic grazers, foraminifer and pteropods, that make shells from calcium carbonate - a process which produces carbon dioxide”.

The biogeochemist, and an international team of collaborators, were the first to quantify production and sinking of these calcium carbonate shells resulting from a phytoplankton bloom in the Southern Ocean, close to the Crozet Islands, with surprising results. Natural fertilization, caused by iron leached from the basaltic islands, increased the production and sinking of these calcium carbonate shells to a greater extent than sinking phytoplankton. This has important implications for the deep-sea storage of the carbon dioxide resulting from these blooms.

“The production and sinking of these calcium carbonate shells affects the balance of carbon dioxide in the surface ocean over 100 to 1000 year timescales”, explains Dr. Ian Salter. “Our calculations suggest that this process reduces the amount of carbon dioxide transferred to the ocean interior via sinking phytoplankton by up to 30 per cent in this naturally fertilized system. However, it is unclear that purposefully added iron would have the same impact.”

Interestingly the reduction in the efficiency of the biological carbon pump was not just caused by a higher abundance of these organisms, but also by changes in species composition. “In our samples from iron fertilized areas we found more species that produce larger calcium carbonate shells, and in turn produce more carbon dioxide per individual”, explains the biogeochemist. Iron fertilization can therefore affect biodiversity and ecosystem structure with important knock-on effects for climate interactions. “It is important to recognise that our findings are only from a specific area of the Southern Ocean. The ecology of these shelled organisms can be very different depending on the species and exactly where in the ocean they live”, cautions Dr. Ian Salter.

In future research projects Dr. Ian Salter will continue to investigate the sinking of phytoplankton and shelled calcifying organisms in other naturally iron-fertilized areas of the Southern Ocean, in addition to the Arctic Ocean, where melting sea ice conditions may also affect this delicate balance.

Notes for Editors:

The original paper was published in nature geoscience under the following title:

Salter, et al.: Carbonate counter pump stimulated by natural iron fertilization in the Polar Frontal Zone. nature geoscience, DOI: 10.1038/ngeo2285

Images for the release can be found here: http://www.awi.de/en/news/press_releases/

Your scientific contact person at the Alfred Wegener Institute is Dr. Ian Salter (tel.: +49 471 4831-2386; e-mail: Ian.Salter(at)awi.de). Your contact person in the Dept. of Communications and Media Relations is Kristina Bär ( tel. +49 471 4831-2139; e-mail: medien@awi.de).


Follow the Alfred Wegener Institute on Twitter and Facebook. In this way you will receive all current news as well as information on brief everyday stories about life at the institute.


The Alfred Wegener Institute conducts research in the Arctic, Antarctic and oceans of the high and mid-latitudes. It coordinates polar research in Germany and provides major infrastructure to the international scientific community, such as the research icebreaker Polarstern and stations in the Arctic and Antarctica. The Alfred Wegener Institute is one of the 18 research centres of the Helmholtz Association, the largest scientific organisation in Germany.

Ralf Röchert | idw - Informationsdienst Wissenschaft
Further information:
http://www.awi.de

More articles from Earth Sciences:

nachricht Devils Hole: Ancient Traces of Climate History
24.05.2017 | Universität Innsbruck

nachricht Supercomputing helps researchers understand Earth's interior
23.05.2017 | University of Illinois College of Liberal Arts & Sciences

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>