Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Slow earthquakes in ocean subduction zones shed light on tsunami risk

19.06.2017

Instruments placed on seafloor off the coast of Japan lead to new insight

Find related stories on NSF's geosciences risk and resilience interest area.

Understanding "slow-slip" earthquakes on the seafloor -- seismic events that occur over a period of days or weeks -- is giving researchers new insights into undersea earthquakes and the subsequent creation of tsunamis. Through an ocean discovery program supported by the National Science Foundation (NSF), scientists are studying the seafloor off the coast of Japan. The region could provide vital clues.


Assembly of pressure sensors to be installed 8,202 feet beneath the ocean surface.

Credit: Achim Kopf

Two tectonic plates, the Pacific Plate and the Eurasian Plate, meet there. In this ocean trench zone, the Pacific plate slides beneath the Eurasian plate. Such subduction zones are often associated with large earthquakes.

"This area is the shallowest part of the plate boundary system," said Demian Saffer, a geoscientist at Penn State University. "If this region near the ocean trench slips in an earthquake, it has the potential to generate a large tsunami."

Saffer and Eiichiro Araki, senior research scientist at the Japan Agency for Marine-Earth Science and Technology, published the results of their investigations of the plate boundary in this week's issue of the journal Science.

The results are important for understanding tsunami risk, according to James Allan, program director in NSF's Division of Ocean Sciences.

"Such tidal waves can affect the lives of hundreds of thousands of people and result in billions of dollars in damages, as happened in Southeast Asia in 2004," Allan said. "This research underscores the importance of scientific drillship-based studies, and of collecting oceanographic and geologic data over long periods of time."

The plate boundary earthquake zone off Japan's coast forms part of the "ring of fire" that surrounds the Pacific Ocean. Once the end of a plate sliding -- or subducting -- beneath another reaches a certain depth, the material from the descending plate melts, forming volcanoes that often are located on land. Mount St. Helens in the U.S. is one of these volcanoes, as is Mount Fuji in Japan.

In 2009 and 2010, scientists with the IODP (Integrated Ocean Drilling Program, now the International Ocean Discovery Program) NanTroSEIZE (Nankai Trough Seismogenic Zone Experiment) project drilled two boreholes in the Nankai Trough southwest of Honshu, Japan. The holes were drilled from aboard a scientific drillship. In 2010, also from a scientific drillship, researchers installed monitoring instruments in the holes as part of a network that includes sensors on the seafloor. NSF supports the IODP.

The two boreholes are 6.6 miles apart, straddling the boundary of the last major earthquake in this area, which occurred in 1944 and measured magnitude 8.1. The resulting tsunami, which hit Tokyo, was 26 feet high.

Research shows that slow earthquakes are an important part of fault slip and earthquake occurrence at tectonic plate boundaries. They may explain where some of the energy built up in a fault or a subduction zone goes.

"Until we had these data, no one knew if zero percent or one hundred percent of the energy in the shallow subduction zone was dissipated by slow earthquakes," Saffer said. The scientists found that about 50 percent of the energy is released in slow earthquakes.

The remaining 50 percent, Saffer said, could be taken up in a permanent shortening of one of the plates or be stored for the next 100- or 150-year earthquake.

"We still don't know which is the case, but it makes a big difference for tsunami hazards," Saffer said. "The slow slip could reduce tsunami risk by periodically relieving stress, but it is probably more complicated than just acting as a shock absorber."

The researchers discovered a series of slow slip events where the tectonic plates meet, seaward of an area of recurring magnitude 8 earthquakes. Some of these were triggered by unconnected earthquakes, and some happened spontaneously.

This group of slow earthquakes recurred every 12 to 18 months. "We discovered slow earthquakes of magnitude 5 or 6 in the region that last from days to weeks," Saffer said.

These earthquakes usually go unnoticed because they are so slow and far offshore.

The researchers also note that because earthquakes that occur at a distance from this subduction zone can trigger slow earthquakes, the area is much more sensitive than previously thought.

"The question now is whether it releases stress when these slow earthquakes occur," Saffer said. "Some caution is required in simply concluding that the slow events reduce hazard, because our results also show that the outer part of the subduction area can store strain. Furthermore, are the slow earthquakes doing anything to load deeper parts of the area that do cause big earthquakes? We don't know."

###

Also part of this project were Achim J. Kopf, MARUM-Center for Marine Environmental Sciences; Laura M. Wallace, GNS Sciences, New Zealand and University of Texas Institute of Geophysics; Toshinori Kimura and Yuya Machida, Japan Agency for Marine-Earth Science and Technology, Kanagawa, Japan; Satoshi Ide, Department of Earth and Planetary Science, University of Tokyo; Earl Davis, Pacific Geoscience Centre, Geological Survey of Canada; and IODP Expedition 365 shipboard scientists.

Media Contact

Cheryl Dybas
cdybas@nsf.gov

 @NSF

http://www.nsf.gov 

Cheryl Dybas | EurekAlert!

More articles from Earth Sciences:

nachricht Large-Mouthed Fish Was Top Predator After Mass Extinction
26.07.2017 | Universität Zürich

nachricht Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds
25.07.2017 | University of Illinois at Urbana-Champaign

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

New 3-D imaging reveals how human cell nucleus organizes DNA and chromatin of its genome

28.07.2017 | Health and Medicine

Heavy metals in water meet their match

28.07.2017 | Power and Electrical Engineering

Oestrogen regulates pathological changes of bones via bone lining cells

28.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>