Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sinking islands: Does the rise of sea level endanger the Takuu Atoll in the Pacific?

02.02.2016

In the last decades, sea level has been rising continuously – about 3.3 mm per year. For reef islands such as the Maldives or the Marshall Islands a sinister picture is being painted evoking the demise of the island states and their cultures. Are the effects of sea-level rise already noticeable on reef islands? Scientists from the ZMT have now answered this question for the Takuu Atoll, a group of Pacific islands, located northeast of Papua New Guinea.

In the last decades, sea level has been rising continuously – about 3.3 mm per year. For reef islands such as the Maldives or the Marshall Islands a sinister picture is being painted evoking the demise of the island states and their cultures.


In the Takuu Atoll

Anke Mösinger, Leibniz Center for Tropical Marine Ecology


Ritual dances in the Takuu Atoll

Anke Mösinger, Leibniz Center for Tropical Marine Ecology

Are the effects of sea-level rise already noticeable on reef islands? Scientists from the ZMT have now answered this question for the Takuu Atoll, a group of Pacific islands, located northeast of Papua New Guinea.

Reef islands are among the landforms most vulnerable to the rise of the sea level. Researchers have already predicted that the Takuu Atoll with its ancient Polynesian culture will no longer be habitable within the next decades. The island government is said to have already made plans to relocate the community as so-called “climate refugees”. The alarming problem has also been the focus of an award-winning documentary called “There Once Was An Island” from 2010.

Not many studies, however, have as yet investigated the visible effects of climate change on reef islands. For the first time ZMT geologist Dr. Thomas Mann has now examined the changes in vegetated land area and the position of the coastline on Takuu since 1943 by closely studying areal photographs from the Second World War and an extensive set of satellite images. “The result came as quite a surprise to us,” he says.

“Although the rise of the sea level started about 100 years ago and has been progressing much faster since the 1990s, the vegetated land area of the Takuu islands has grown by a total of three percent between 1943 and 2012.”

Although a reversing trend has emerged since 2008, the loss of land however happened too suddenly to be attributed to sea-level rise. The erosion started immediately after the atoll was affected by storm waves, which eroded large parts of the islands’ coasts and contributed to the horror scenario of the sinking islands. “After such climate events islands can recover – albeit very slowly,” says Dr. Thomas Mann. “Our data have shown that the renewal of the islands already started a few years after the storm tide.”

Changing beach dimensions also added to the picture of the sinking Takuu Atoll, but the beaches only decreased in size on a number of islands – a process which was in fact man-made as the islanders removed large amounts of sand to erect artificial hills on which they traditionally built houses for the village elders. Furthermore, the islanders had constructed a massive seawall on the main island of Nukutoa to safeguard against storm tides. Instead of smoothly rolling onto the shallow shore the waves now hit the wall with huge force, whirling up and seizing the sandy beach below.

“Overall, our data do not allow any conclusion that current sea-level rise has had a negative effect on the Takuu islands in the last 70 years,” explains Dr. Mann. Coral islands are also not powerless against sea-level rise, he says. “These islands are lined with living corals, which can grow up to 20 cm per year. Entire coral reefs can still grow by around 8 mm a year, so in a manner of speaking they are faster than the current rise of the sea level.”

However, a coral reef can only keep up the pace if it is in healthy condition and not impaired by pollution, higher water temperature or destructive fishing methods. Dr. Mann says: “The health of coral reefs is a deciding factor for the future stability of reef islands.”

Publications:
Mann, T., Westphal, H. (2015) Multi-decadal shoreline changes on Takú Atoll, Papua New Guinea: Observational evidence of early reef island recovery after the impact of storm waves. Geomorphology 257. doi:10.1016/j.geomorph.2015.12.028

Mann, T., Bayliss-Smith, T., Westphal, H. (2015). A Geomorphic Interpretation of Shoreline Change Rates on Reef Islands. Journal of Coastal Research. DOI: 10.2112/JCOASTRES-D-15-00093.1

Contact:
Dr. Thomas Mann
Leibniz Center for Tropical Marine Ecology
Tel: 0421 / 23800-132
Email: thomas.mann@leibniz-zmt.de

About the Leibniz Center for Tropical Marine Ecology
In research and education the Leibniz Center for Tropical Marine Ecology (ZMT) in Bremen is dedicated to the better understanding of tropical coastal ecosystems. As an interdisciplinary Leibniz institute the ZMT conducts research on the structure and functioning of tropical coastal ecosystems and their reaction to natural changes and human interactions. It aims to provide a scientific basis for the protection and sustainable use of these ecosystems. The ZMT works in close cooperation with partners in the tropics, where it supports capacity building and the development of infrastructures in the area of sustainable coastal zone management. The ZMT is a member of the Leibniz Association.

Dr. Susanne Eickhoff | idw - Informationsdienst Wissenschaft

More articles from Earth Sciences:

nachricht NASA eyes Pineapple Express soaking California
24.02.2017 | NASA/Goddard Space Flight Center

nachricht 'Quartz' crystals at the Earth's core power its magnetic field
23.02.2017 | Tokyo Institute of Technology

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>