Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists track monster waves below the ocean surface

22.07.2015

New study provides insight on the formation and fate of internal waves

A scientific research team spent seven years tracking the movements of skyscraper-high waves in the South China Sea. University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science scientists were part of the collaborative international field study trying to understand how these waves, which rarely break the ocean surface, develop, move and dissipate underwater.


The density map covering the South China Sea from Luzon Strait (right side) the 'Generation Area' to Dongsha Island (left side) shows how prolific these internal waves occur in this region and where they are most visible. The wave packets travel east to west. The color denotes how frequently an internal wave was observed in satellite images over a several month period in 2007.

Credit: CSTARS

These waves, known as internal waves, occur in all the oceans, as well as in lakes and fjords. In the Luzon Strait, between Taiwan and the Philippine island of Luzon, they can reach up to 170 meters (558 feet) tall and travel several hundred kilometers, making them some of the largest waves in the world.

Using satellite imagery collected at UM's Center for Southeastern Tropical Remote Sensing (CSTARS), scientists were able to detect and track them from above.

The team discovered that internal waves are generated daily from internal tides, which also occur below the ocean surface, and grow larger as the water is pushed westward through the Luzon Strait into the South China Sea.

"The internal wave produces a current that organizes the ripples on the surface, which are picked up by the radar satellite," said study co-author Hans Graber, a UM Rosenstiel School professor of ocean sciences and director of CSTARS. "This allows us to study how these waves, which largely go unnoticed at the surface, propagate and move."

Tracking internal waves from start to finish helps scientists understand these waves for a number of reasons. They move huge volumes of heat, salt, and nutrient rich-water, which are important to fish, industrial fishing operations and the global climate. In addition, they are important to monitor for safe submarine operations.

###

The team published the study, titled "The formation and fate of internal waves in the South China Sea," in the May 7 issue of the journal Nature. The U.S. Office of Naval Research and the Taiwan National Science Council funded the study.

About the University of Miami's Rosenstiel School

The University of Miami is one of the largest private research institutions in the southeastern United States. The University's mission is to provide quality education, attract and retain outstanding students, support the faculty and their research, and build an endowment for University initiatives. Founded in the 1940's, the Rosenstiel School of Marine & Atmospheric Science has grown into one of the world's premier marine and atmospheric research institutions. Offering dynamic interdisciplinary academics, the Rosenstiel School is dedicated to helping communities to better understand the planet, participating in the establishment of environmental policies, and aiding in the improvement of society and quality of life. For more information, visit: http://www.rsmas.miami.edu.

Diana Udel | EurekAlert!

More articles from Earth Sciences:

nachricht NASA examines Peru's deadly rainfall
24.03.2017 | NASA/Goddard Space Flight Center

nachricht Steep rise of the Bernese Alps
24.03.2017 | Universität Bern

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>