Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists shed light on carbon's descent into the deep Earth

19.07.2017

Examining conditions within the Earth's interior is crucial not only to give us a window back to Earth's history but also to understand the current environment and its future.

This study, published in Nature Communications, offers an explanation of carbon's descent into the deep Earth. "The stability regions of carbonates are key to understanding the deep carbon cycle and the role of the deep Earth in the global carbon cycle." says Leonid Dubrovinsky, from the University of Bayreuth.


Valerio Cerantola, corresponding author and postdoctoral scientist at the ESRF, at ESRF ID27 high pressure beamline.

Credit: ESRF

This is where the ESRF, the European Synchrotron in Grenoble, France. comes in. "The intense X-rays from the ESRF allow us to access the extreme conditions within the entire Earth's mantle." underlines Valerio Cerantola, lead author, former PhD student at the University of Bayreuth and now postdoctoral scientist at the ESRF.

In the last century, the rapid increase in the amount of CO2 in the atmosphere together with the observed climate change have increasingly focused scientists' attention on the carbon cycle and its evolution at the Earth's surface. The carbon cycle also extends below the surface: recent estimations locate up to 90% of the Earth's carbon budget in the Earth's mantle and core. Due to the dynamic nature of tectonic plate movements, convection and subduction, there is a constant recycling of carbon between the Earth's surface and its deep interior.

... more about:
»ESRF »Earth »Synchrotron »carbon cycle »mantle

In this study, the research team focused on carbonate phases, which are one of the main carbon-bearing minerals in the deep mantle. Carbonates are a group of minerals that contain the carbonate ion (CO32-) and a metal, such as iron or magnesium. The scientists studied the behaviour of a pure iron carbonate, FeCO3 (called siderite), at extreme temperature and pressure conditions covering the entire Earth's mantle, meaning over 2500 K and 100 GPa, which corresponds to roughly one million times the atmospheric pressure.

"This iron carbonate is of particular interest because of its stability at lower mantle conditions due to spin transition. Moreover the crystal chemistry of the high-pressure carbonates is dramatically different from that at ambient conditions." explains Elena Bykova, from the University of Bayreuth.

In order to study the stability of FeCO3, the research team performed high pressure and high temperature experiments at three ESRF beamlines: ID27, ID18 and ID09a (now ID15b). "The combination of the multiple techniques gave us unique datasets that ultimately allowed us to uncover new C-carriers inside the deep Earth and show the mechanism behind their formation" says Cerantola. One experimental run was carried out at beamline 13ID-D at APS.

Upon heating FeCO3 to Earth geotherm temperatures at pressures up to about 50 GPa, FeCO3 partially dissociated and formed various iron oxides. At higher pressures, above ~75 GPa, the scientists discovered two new compounds - tetrairon (III) orthocarbonate, Fe43+C3O12, and diiron (II) diiron (III) tetracarbonate, Fe22+Fe23+C4O13 (Figure 1). ?

"There were some theoretical predictions, but so far experimental information about structures of high pressure carbonates have been too limited (and indeed controversial) to speculate about carbonate crystal chemistry. Our data show that while crystal structure of Fe22+Fe23+C4O13 could be found in silicates, no analogues of Fe43+C3O12 are found in nature." underlines Bykova.

They also found out that one phase, the tetracarbonate Fe4C4O13, shows unprecedented structural stability and keeps its structure even at pressures along the entire geotherm to depths of at least 2500 km, which is close to the boundary between the mantle and the core. It thus demonstrated that self-oxidation-reduction reactions can preserve carbonates in the Earth's lower mantle?(Figure 1, a and b). "The study shows the importance of oxidation and reduction (redox) reactions in the deep carbon cycle, which are inevitably linked to other volatile cycles such as oxygen." underlines Catherine McCammon, from the University of Bayreuth.

Media Contact

Delphine Chenevier
press@esrf.fr
33-047-688-2604

 @esrfsynchrotron

http://www.esrf.fr 

Delphine Chenevier | EurekAlert!

Further reports about: ESRF Earth Synchrotron carbon cycle mantle

More articles from Earth Sciences:

nachricht World’s oldest known oxygen oasis discovered
18.01.2018 | Eberhard Karls Universität Tübingen

nachricht A close-up look at an uncommon underwater eruption
11.01.2018 | Woods Hole Oceanographic Institution

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>