Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists shed light on carbon's descent into the deep Earth

19.07.2017

Examining conditions within the Earth's interior is crucial not only to give us a window back to Earth's history but also to understand the current environment and its future.

This study, published in Nature Communications, offers an explanation of carbon's descent into the deep Earth. "The stability regions of carbonates are key to understanding the deep carbon cycle and the role of the deep Earth in the global carbon cycle." says Leonid Dubrovinsky, from the University of Bayreuth.


Valerio Cerantola, corresponding author and postdoctoral scientist at the ESRF, at ESRF ID27 high pressure beamline.

Credit: ESRF

This is where the ESRF, the European Synchrotron in Grenoble, France. comes in. "The intense X-rays from the ESRF allow us to access the extreme conditions within the entire Earth's mantle." underlines Valerio Cerantola, lead author, former PhD student at the University of Bayreuth and now postdoctoral scientist at the ESRF.

In the last century, the rapid increase in the amount of CO2 in the atmosphere together with the observed climate change have increasingly focused scientists' attention on the carbon cycle and its evolution at the Earth's surface. The carbon cycle also extends below the surface: recent estimations locate up to 90% of the Earth's carbon budget in the Earth's mantle and core. Due to the dynamic nature of tectonic plate movements, convection and subduction, there is a constant recycling of carbon between the Earth's surface and its deep interior.

... more about:
»ESRF »Earth »Synchrotron »carbon cycle »mantle

In this study, the research team focused on carbonate phases, which are one of the main carbon-bearing minerals in the deep mantle. Carbonates are a group of minerals that contain the carbonate ion (CO32-) and a metal, such as iron or magnesium. The scientists studied the behaviour of a pure iron carbonate, FeCO3 (called siderite), at extreme temperature and pressure conditions covering the entire Earth's mantle, meaning over 2500 K and 100 GPa, which corresponds to roughly one million times the atmospheric pressure.

"This iron carbonate is of particular interest because of its stability at lower mantle conditions due to spin transition. Moreover the crystal chemistry of the high-pressure carbonates is dramatically different from that at ambient conditions." explains Elena Bykova, from the University of Bayreuth.

In order to study the stability of FeCO3, the research team performed high pressure and high temperature experiments at three ESRF beamlines: ID27, ID18 and ID09a (now ID15b). "The combination of the multiple techniques gave us unique datasets that ultimately allowed us to uncover new C-carriers inside the deep Earth and show the mechanism behind their formation" says Cerantola. One experimental run was carried out at beamline 13ID-D at APS.

Upon heating FeCO3 to Earth geotherm temperatures at pressures up to about 50 GPa, FeCO3 partially dissociated and formed various iron oxides. At higher pressures, above ~75 GPa, the scientists discovered two new compounds - tetrairon (III) orthocarbonate, Fe43+C3O12, and diiron (II) diiron (III) tetracarbonate, Fe22+Fe23+C4O13 (Figure 1). ?

"There were some theoretical predictions, but so far experimental information about structures of high pressure carbonates have been too limited (and indeed controversial) to speculate about carbonate crystal chemistry. Our data show that while crystal structure of Fe22+Fe23+C4O13 could be found in silicates, no analogues of Fe43+C3O12 are found in nature." underlines Bykova.

They also found out that one phase, the tetracarbonate Fe4C4O13, shows unprecedented structural stability and keeps its structure even at pressures along the entire geotherm to depths of at least 2500 km, which is close to the boundary between the mantle and the core. It thus demonstrated that self-oxidation-reduction reactions can preserve carbonates in the Earth's lower mantle?(Figure 1, a and b). "The study shows the importance of oxidation and reduction (redox) reactions in the deep carbon cycle, which are inevitably linked to other volatile cycles such as oxygen." underlines Catherine McCammon, from the University of Bayreuth.

Media Contact

Delphine Chenevier
press@esrf.fr
33-047-688-2604

 @esrfsynchrotron

http://www.esrf.fr 

Delphine Chenevier | EurekAlert!

Further reports about: ESRF Earth Synchrotron carbon cycle mantle

More articles from Earth Sciences:

nachricht Clear as mud: Desiccation cracks help reveal the shape of water on Mars
20.04.2018 | Geological Society of America

nachricht Hurricane Harvey: Dutch-Texan research shows most fatalities occurred outside flood zones
19.04.2018 | European Geosciences Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>