Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists improve forecast of increasing hazard on Ecuadorian volcano

08.08.2017

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has the potential to instantaneously melt the summit glacier, resulting in devastating mudflows that would intersect with several towns in the Inter-Andean valley--one of the most densely populated regions of Ecuador.


This is the Cotopaxi volcano, Andes Mountain region of Ecuador.

Credit: B. Bernard, courtesy of IG

In August 2015, after four months of increasing seismic tremors and gas emissions, Cotopaxi began to erupt.

"Using the InSAR technique, we were able to detect three centimeters of ground inflation along one flank of the volcano during the pre-eruption period," said Anieri Morales-Rivera, a UM Rosenstiel School graduate student and lead author of the study.

... more about:
»Atmospheric »Ecuador »InSAR »SAR »satellite data »volcano

Ground inflation occurs when new magma moves closer to the surface.

The results of the study are supported by ground-based GPS instruments operated around the volcano by the IGEPN, the Ecuadorian agency responsible for monitoring Cotopaxi.

"From our instruments, we knew there was serious activity within Cotopaxi," said Patricia Mothes, a chief volcanologist at the IGEPN and coauthor of the study. "The satellite data allowed us to pinpoint where the uplift took place, which in turn helped us better understand how the magma ascended prior to the eruption."

ASI begun acquiring the SAR imagery in this region half a year before Cotopaxi's unrest started. Although ASI did not know the eruption was imminent, they were aware of the high risks related to Cotopaxi because of their involvement with Geohazard Supersites and Natural Laboratories (GSNL), a recently formed international initiative between space agencies, volcano monitoring agencies and researchers. The objective of the initiative is to better utilize advanced satellite resources for the monitoring of geological activity and to mitigate the development of a crisis.

"Our work would not have been possible without the many images that ASI had acquired," said Falk Amelung, a UM Rosenstiel School professor in the Department of Marine Geosciences and a coauthor of the study.

Amelung also noted that the accuracy of the InSAR technique improves with the increased availability of SAR images.

"This satellite data will play an increasingly important role for the monitoring and the study of Ecuadorian volcanoes, said Mothes. "Since it is not possible for us to place dense measurement networks on all potentially active sites in Ecuador --since there are about 40 potentially active volcanoes."

Future eruptions of the Cotopaxi volcano are expected to be preceded by similar or greater ground inflation. With the GSNL framework in place, Cotopaxi continues to be monitored from space, making it easier to prepare for the next eruption.

###

The study, titled "Ground deformation before the 2015 eruptions of Cotopaxi volcano detected by InSAR," appeared in the July 3, 2017 issue of the journal Geophysical Research Letters. The coauthors of the study include: Anieri Morales-Rivera and Falk Amelung from the UM Rosenstiel School of Marine and Atmospheric Science; Patricia Mothes and Paul Jarrin from the Instituto Geofísico--Escuela Politécnica Nacional in Quito, Ecuador; Sang-Hoon Hong, from the Pusan National University's Department of Geological Sciences in South Korea; and Jean-Mathieu Nocquet from the Geoazur, IRD, Observatoire de la Côte d'Azur at the Université Côte d'Azur, in France.

Funding for the study was provided by NASA's Earth Science Division, grant number NNX14AL39G and NSF Cooperative grant number EAR-0735156.

DOI : 10.1002/2017GL073720

About the University of Miami's Rosenstiel School

The University of Miami is one of the largest private research institutions in the southeastern United States. The University's mission is to provide quality education, attract and retain outstanding students, support the faculty and their research, and build an endowment for University initiatives. Founded in the 1940's, the Rosenstiel School of Marine & Atmospheric Science has grown into one of the world's premier marine and atmospheric research institutions. Offering dynamic interdisciplinary academics, the Rosenstiel School is dedicated to helping communities to better understand the planet, participating in the establishment of environmental policies, and aiding in the improvement of society and quality of life. For more information, visit: http://www.rsmas.miami.edu.

Diana Udel | EurekAlert!

Further reports about: Atmospheric Ecuador InSAR SAR satellite data volcano

More articles from Earth Sciences:

nachricht NASA finds newly formed tropical storm lan over open waters
17.10.2017 | NASA/Goddard Space Flight Center

nachricht The melting ice makes the sea around Greenland less saline
16.10.2017 | Aarhus University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>