Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists find sustainable solutions for oysters in the future by looking into the past

24.05.2016

Oysters are keystone organisms in estuaries around the world, influencing water quality, constructing habitat and providing food for humans and wildlife. Yet their populations in the Chesapeake Bay and elsewhere have dramatically declined after more than a century of overfishing, pollution, disease and habitat degradation. Smithsonian scientists and colleagues, however, have conducted the first bay-wide, millennial-scale study of oyster harvesting in the Chesapeake, revealing a sustainable model for future oyster restoration. Their research is published in the May 23 issue of the Proceedings of the National Academy of Sciences.

Despite providing food for humans for millennia, little is known about Chesapeake Bay oyster populations prior to the late 1800s. Using fossil, archaeological and modern biological data, the team of scientists was able to reconstruct changes in oyster size from four time frames: the Pleistocene (780,000-13,000 years ago), prehistoric Native American occupation (3,200-400 years ago), historic (400-50 years ago) and modern times (2000 to 2014).


A typical Native American oyster deposit, or midden, dating to about 1,000 years ago.

Credit: Torben Rick

They found that while oyster size fluctuated at certain points through time, it has generally decreased over time and the average size of modern oysters is significantly smaller than oysters from the 1800s and earlier.

"Our work demonstrates the importance of working across disciplines and using the past to help us understand and transcend modern environmental issues," said Torben Rick, an anthropologist at the Smithsonian's National Museum of Natural History and lead author of the research.

"In this case, paleontology, archaeology, history and marine ecology all provided unique perspectives on the difficult puzzle of restoring Chesapeake oysters. Ultimately, they issue a challenge for us to make important and difficult decisions about how to restore and sustain our marine ecosystems and organisms."

The team also found that Native Americans' method of selecting and hand-collecting oysters likely resulted in more consistent average sizes and fewer very small individual oysters. People were likely removing oysters from the reefs in a way that was biased toward medium-sized oysters without decreasing the average size of the oysters in the harvested populations.

With limited variability in oyster size and abundance, and no strong evidence for a size decline from 3,500 to 400 years ago, the Native American Chesapeake Bay oyster harvesting appears to have been largely sustainable, despite changing climatic conditions and sea-level rise. The teams point to four supporting factors:

  • Water depth and technology restricted Native Americans' harvest primarily close to shore
  • Oysters may have been harvested intensively at particular times of year and less so at others
  • The density of the human population was drastically lower than today
  • Broad-spectrum human diets that had a mix of marine and terrestrial resources

It is this sustainability of the Native American oyster fishery that can provide insight into the future restoration of oysters in the Chesapeake Bay and around the world. However, there are factors stacked against modern-day oysters that did not exist in the prehistoric Native American's time.

"Chesapeake Bay oysters now face challenges resulting from disease, poor water quality and over a century of overfishing, which not only removes oysters, but also destroys the reef habitat oysters depend on," said Denise Breitburg, co-author and senior scientist at the Smithsonian Environmental Research Center. "These factors have led to the decline of oysters in Chesapeake Bay and are making restoration difficult. But large-scale efforts are underway to try to reverse the trend."

The team's model of a sustainable prehistoric Native American harvest of oysters, primarily by hand from fringing reefs that left deeper-water reefs largely intact, supports recent plans for Chesapeake Bay oyster-restoration efforts.

They include reduction of modern harvest levels and creation of increased no-take zones that are conceptually similar to deep-water areas where harvest was unlikely in Native American fisheries. Current restoration plans also include enhancement of oyster density using hatchery seed and the addition of new hard substrate where needed. The team's Pleistocene data also provide a baseline against which the size distribution of oysters in no-take reserves could be evaluated.

While not solving all the challenges facing oysters in the Chesapeake, the team's research provides an example of an apparently sustainable millennial-scale fishery, elements of which may help inform restoration and harvest in today's ecosystem.

The archaeological component of this study was funded by the Smithsonian Institution and a Committee for Research and Exploration grant from the National Geographic Society.

Media Contact

John Gibbons
gibbonsjp@si.edu
202-633-5187

http://www.si.edu 

John Gibbons | EurekAlert!

More articles from Earth Sciences:

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

nachricht Modeling magma to find copper
13.01.2017 | Université de Genève

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>