Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists find pre-earthquake activity in central Alaska

06.06.2018

Earth scientists consistently look for a reliable way to forecast earthquakes. New research from University of Alaska Fairbanks Geophysical Institute professor Carl Tape may help in that endeavor, due to a unique set of circumstances.

"Our observations have recorded an unequivocally interesting sequence of events," Tape said.

Tape and his colleagues found evidence for accelerating activity before a 2016 earthquake in a laterally moving fault zone in central Alaska. The activity included a phenomenon known as very low-frequency earthquakes, referring to the type of energy waves associated with it.


Lakes in the roadless Minto Flats surround the Tanana River in this photo from July 2014. The ridge on the horizon leads down to the town of Nenana, Alaska. Seismic stations placed in this unique region detected some intriguing pre-earthquake activity.

Credit: UAF Photo by Carl Tape


University of Alaska Fairbanks doctoral student Kyle Smith installs a T120 posthole seismometer at a site in the Minto Flats of central Alaska in September 2015.

Credit: UAF photo by Carl Tape

Typical earthquakes have two associated energy waves, called the P and S waves. Very low-frequency earthquakes do not have such signals. Instead, their waves occur on much lower frequencies.

"Most earthquakes start abruptly, but not always," said Luciana Astiz, a program director in the National Science Foundation's Division of Earth Sciences, which supported the research. "A fault zone in central Alaska monitored by new scientific instruments offers a look at a more complex process.

This study reports the first observations of a slow process that transitions into an earthquake -- something previously observed only in laboratory experiments. These new observations contribute toward understanding the physics of earthquakes."

In 2015, Tape installed 13 seismic stations in the Minto Flats of central Alaska to capture the area's fault activity. Nine days later, the instruments recorded a long-duration, very low-frequency process, normally only seen in deep subduction zones. This event showed a small amount of activity gathering, or nucleating, in a central area below the surface. It did not lead to an earthquake.

A second, similar event in 2016 led to a key observation. At Minto Flats, a magnitude 3.7 quake occurred at a depth of about 10.5 miles, not an unusual event in itself. However, the event was preceded by a 12-hour accelerating sequence of earthquakes and 22 seconds of distinct high- and low-frequency waves in a concentrated area.

Tape said that this kind of slow event transitioning into a rupture had previously only been seen in laboratory experiments.

"The rupture process started, then it found a patch of the fault that was ready to go, and that's what people have not seen. It's really exciting," Tape said.

"The leap we make, and maybe the more controversial thing, is that this emergent long-period signal only seen on top of the fault is a low-frequency signal that can sometimes turn into an earthquake and sometimes not," Tape said.

Tape and his colleagues may have seen this kind of activity before. In 2012, there was a similar small event recorded in central Alaska. At that time, a magnitude 8.6 earthquake took place under the Indian Ocean and its energy was felt around the world. Because of the magnitude of this event, the smaller activity from central Alaska was overshadowed. Whatever signal the Minto Flats site gave off could not be confirmed. However, it was intriguing enough to help justify putting sensors in the area.

"Never in my wildest dreams did I expect we'd see something like that again," Tape said. "I assumed that the conditions that happened in 2012 were somehow unique and that huge surface waves led to this nucleation. Even though I proposed putting instruments on the area in a proposal, it was the last item I put on. I thought, "Maybe we'll see something crazy out there.'"

By 2016, Tape had high-quality stations on top of the Minto Flat faults, around 18 miles from the main events, and no triggering earthquake to complicate the data.

"We are staring right at this process, and what it showed was that exactly during the tremor-like signal there is this emergent long-duration signal that hints at what's driving this nucleation phase," he said.

Geologists have been looking for something like this for a long time. So why hasn't anyone seen it?

"I'm left saying 'I don't know,'" Tape said. "I'm going to assume everyone has been looking for something before the P wave forever. It leads me to believe there is something special about this fault zone."

Minto Flats has a deep sedimentary basin, strike-slip faulting, active tectonics and deep earthquakes; it is an unusual site.

"In some ways, I wish there wasn't anything special. I wish it was a global phenomenon that we discovered, but it's not," Tape said. "It appears there is something special about the conditions in Minto Flats."

The results of the research will appear in the latest issue of the journal Nature Geoscience. The paper is titled "Earthquake Nucleation and Fault Slip Complexity in the Lower Crust of Central Alaska."

The project was primarily funded by a National Science Foundation CAREER project that supported Tape and his student co-authors, Vipul Silwal and Kyle Smith.

Media Contact

Fritz Freudenberger
ffreudenberger@alaska.edu
907-474-7185

 @uafairbanks

http://www.uaf.edu 

Fritz Freudenberger | EurekAlert!
Further information:
https://news.uaf.edu/scientists-find-pre-earthquake-activity-in-central-alaska/
http://dx.doi.org/10.1038/s41561-018-0144-2

More articles from Earth Sciences:

nachricht More detailed data on thermal conditions of Arctic ground
06.06.2018 | University of Helsinki

nachricht New insight into Earth's crust, mantle and outer core interactions
05.06.2018 | University of Liverpool

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

12th COMPAMED Spring Convention: Innovative manufacturing processes of modern implants

28.05.2018 | Event News

In focus: Climate adapted plants

25.05.2018 | Event News

 
Latest News

Blowing bubbles for cancer treatment

06.06.2018 | Health and Medicine

Scientists find pre-earthquake activity in central Alaska

06.06.2018 | Earth Sciences

Transferring quantum information using sound

06.06.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>