Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists find oxidized iron deep within the Earth's interior

24.01.2018

Unexpected finding shows surprises geoscientists around the world

Scientists digging deep into the Earth's mantle recently made an unexpected discovery.


Diamonds with garnet inclusions can form at depths down to 550 kilometres below the surface. Image: Jeff W. Harris, University of Glasgow.

Credit: Jeff W. Harris, University of Glasgow.

Five hundred and fifty kilometres below the Earth's surface, they found highly oxidized iron, similar to the rust we see on our planet's surface, within garnets found within diamonds.

The result surprised geoscientists around the globe because there is little opportunity for iron to become so highly oxidized deep below the Earth's surface.

Surprising discovery

"On Earth's surface, where oxygen is plentiful, iron will oxidize to rust," explained Thomas Stachel, professor in the Department of Earth and Atmospheric Sciences at the University of Alberta, who co-authored the study. "In the Earth's deep mantle, we should find iron in its less oxidized form, known as ferrous iron, or in its metal form. But what we found was the exact opposite--the deeper we go, the more oxidized iron we found."

This discovery suggests that something oxidized the rocks in which the superdeep diamonds were founds. The scientists suspect that it was molten carbonate, carried to these great depths in sinking slabs of ancient sea floor.

"It's exciting to find evidence of such profound oxidation taking place deep inside the Earth," said Stachel, Canada Research Chair in diamonds.

Carbon cycle

The study also has implications for understanding the global carbon cycle that involves the transport of surface carbon back into the Earth's mantle.

"We know lots about the carbon cycle on Earth's surface, but what about in the mantle?" explained Stachel. "Our study suggests that surface carbon goes down as carbonates to at least 550 kilometres below the surface. There, these carbonates may melt and react with the surrounding rocks, eventually crystallizing into diamonds. Diamonds can then be taken down even deeper in the mantle."

The study shows that the carbon cycle extends deep into mantle, possibly all the way down to the core-mantle boundary, with billion year storage times.

###

The study was led by the University of Oxford with support from researchers in the Faculty of Science at the University of Alberta. "Oxidized iron in garnets from the mantle transition zone," was published in Nature Geoscience (doi: 10.1038/s41561-017-0055-7).

Media Contact

Katie Willis
katie.willis@ualberta.ca
780-267-0880

 @ualberta

http://www.ualberta.ca 

Katie Willis | EurekAlert!

More articles from Earth Sciences:

nachricht Clear as mud: Desiccation cracks help reveal the shape of water on Mars
20.04.2018 | Geological Society of America

nachricht Hurricane Harvey: Dutch-Texan research shows most fatalities occurred outside flood zones
19.04.2018 | European Geosciences Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

One step closer to reality

20.04.2018 | Life Sciences

The dark side of cichlid fish: from cannibal to caregiver

20.04.2018 | Life Sciences

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>