Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Satellites show Joaquin becoming a Category 4 hurricane

02.10.2015

Hurricane Joaquin had become a Category 4 hurricane on the Saffir-Simpson Wind Scale by 2 p.m. EDT on October 1. At NASA, satellite imagery from NOAA's GOES-East satellite was compiled into an animation that showed the hurricane strengthening. Earlier in the day, NASA-NOAA's Suomi NPP satellite saw powerful thunderstorms within, indicating further strengthening.

The GOES-East satellite is managed by NOAA, and at NASA's GOES Project at the NASA Goddard Space Flight Center in Greenbelt, Maryland, imagery from GOES-East we compiled into an animation. The infrared and visible imagery from September 29 to October 1 from showed Hurricane Joaquin become a major hurricane in the Bahamas.


NASA-NOAA's Suomi NPP satellite passed over Joaquin at 06:10 UTC (2:10 a.m. EDT) on Oct. 1 as it was strengthening from a Category 2 to a Category 3 hurricane. Imagery showed cloud top temperatures colder than -63F/-53C (yellow).

Credits: NRL/NASA/NOAA

Earlier in the morning, NASA-NOAA's Suomi NPP satellite passed over Joaquin at 06:10 UTC (2:10 a.m. EDT) as it was strengthening from a Category 2 to a Category 3 hurricane. The Visible Infrared Imaging Radiometer Suite (VIIRS) instrument aboard captured an infrared image that showed cloud top temperatures colder than -63F/-53C, indicative of powerful storms within the hurricane. NASA research has shown that storms with cloud tops that high (and that stretch that high into the troposphere) have the capability to generate heavy rain.

On October 1, a Hurricane Warning was in effect for the Central Bahamas, Northwestern Bahamas including the Abacos, Berry Islands, Eleuthera, Grand Bahama Island, and New Providence, The Acklins, Crooked Island, and Mayaguana in the southeastern Bahamas. A Hurricane Watch was in effect for Bimini and Andros Island, and a Tropical Storm Warning was in effect for the remainder of the southeastern Bahamas excluding the Turks and Caicos Islands and Andros Island.

At 2 p.m. EDT (1800 UTC), the center of Hurricane Joaquin was located near latitude 23.0 North, longitude 74.2 West. Joaquin was moving generally southwestward at about 6 mph (9 kph), and the National Hurricane Center forecast a turn toward the northwest and north on Friday, October 2. On the forecast track, the center of Joaquin will move near or over portions of the central Bahamas today and tonight and pass near or over portions of the northwestern Bahamas on Friday, October 2.

Reports from an Air Force Reserve Hurricane Hunter aircraft indicated that maximum sustained winds have increased to near 130 mph (210 kph) with higher gusts. Joaquin is now a category 4 hurricane on the Saffir-Simpson Hurricane Wind Scale. Some additional strengthening is possible during the next 24 hours, with some fluctuations in intensity possible Friday night and Saturday.

Hurricane force winds extend outward up to 45 miles (75 km) from the center and tropical storm force winds extend outward up to 140 miles (220 km).

The latest minimum central pressure extrapolated from Hurricane Hunter aircraft data is 936 millibars. For effects on the Bahamas, updates to forecasts, watches and warnings, visit the National Hurricane Center website: http://www.nhc.noaa.gov.

The NHC updated forecast takes Joaquin on a more northerly track from Saturday, October 3 through Tuesday, October 6 toward Long Island, New York. Tracks and forecasts are subject to change.

Rob Gutro | EurekAlert!

More articles from Earth Sciences:

nachricht Predicting unpredictability: Information theory offers new way to read ice cores
07.12.2016 | Santa Fe Institute

nachricht Sea ice hit record lows in November
07.12.2016 | University of Colorado at Boulder

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>