Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

S’No Water in Sierra Nevadas

24.08.2015

How melting snow affects underground water reserves

Most of us have strong opinions about snow during the winter. For some, it’s a curse. Others enjoy the recreation heavy snowfall brings. Yet, once warmer weather comes, we tend to forget about those piles of fluffy white stuff that once towered over our driveways.


Photo credit Niah Venable.

Ryan Webb taking measurements in a snow pit.

In mountainous regions, snow cover plays a critical role in water supplies. Typically, melting snow meets with three fates. It can run off the surface of the soil. It can evaporate and return moisture to the air. Finally—and most importantly—it can replenish underground water levels. This process is groundwater recharge.

Changing climate conditions have caused dramatic changes in groundwater levels. “The lower than historically normal snowfall in recent years is one environmental factor that has contributed to the current drought in California,” says Ryan Webb, a Ph.D. student in the department of civil and environmental engineering at Colorado State University.

Webb’s group recently published a study aimed at understanding the changes in soil wetting and drying that occur as snow melts in mountainous, snow-packed regions. The study examined subsurface water content levels in the Sierra Nevada mountains in California. In these regions, soils do not freeze during the winter and remain wet beneath the snowpack.

It’s not easy to measure groundwater levels, due to variability in soil composition and bedrock. In addition, a melting snowpack introduces its own variables. “Because the variability in groundwater recharge is occurring beneath the ground surface, it can be costly to observe,” says Webb. For example, drilling multiple wells at different locations to measure groundwater would be cost-prohibitive—and disruptive.

Instead, the study used a computerized network of moisture sensors—97 in all, buried at various depths. The sensors were located at varying elevations (1,750-2,000 meters) and types of slopes (north, south, or flat). In addition, the study considered the type of tree cover: open, drip edge, or canopy. The researchers took soil moisture measurements directly beneath snow depth measurements, so they could relate these two measures.

Curiously, Webb and coworkers found melting snow could produce highly variable results within the top meter of soil. “One set of sensors could experience quite different wetting and drying dynamics, relative to a sensor only a couple of meters away,” says Webb. This variability persisted at different measurement sites and under different tree cover conditions.

Many soil moisture studies use uniform, one-dimensional models. Webb’s results suggest such models will either over- or under-estimate the amount of groundwater recharge, depending on the location and depth of the sensors used.

Webb concludes that further study will help us understand why groundwater recharge from melting snow is so variable. He adds, “Long-term periods of record could be used to conduct a similar study over a longer timescale.”

Ultimately, these studies will help understand how climate change impacts groundwater supplies—a precious resource in drought-stricken areas of the country.

Read more about Webb’s research in Vadose Zone Journal. The co-authors of the paper are Steven R. Fassnacht and Michael N. Gooseff. Data for this study were provided by the NSF-supported Southern Sierra Critical Zone Observatory.

Contact Information
Susan Fisk
Public and Science Communications Director
sfisk@sciencesocieties.org
Phone: 608-273-8091

Susan Fisk | newswise
Further information:
http://www.sciencesocieties.org

More articles from Earth Sciences:

nachricht NASA eyes Pineapple Express soaking California
24.02.2017 | NASA/Goddard Space Flight Center

nachricht 'Quartz' crystals at the Earth's core power its magnetic field
23.02.2017 | Tokyo Institute of Technology

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>