Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Revealing the ocean's hidden fertilizer

18.05.2015

Phosphorus is one of the most common substances on Earth.

An essential nutrient for every living organism--humans require approximately 700 milligrams per day--we're rarely concerned about consuming enough because it is in most of the foods we eat.


Tiny marine plankton form colonies in a variety of shapes visible to the naked eye.

Credit: Carly Buchwald, WHOI

Despite its ubiquity and living organisms' dependence on it, we know surprisingly little about how it moves, or cycles, through the ocean environment.

Scientists studying the marine phosphorous cycle have known that phosphorus was absorbed by plants and animals and released back to seawater in the form of phosphate as these plants and animals decay and die.

But a growing body of research hints that microbes in the ocean transform phosphorus in ways that remain a mystery.

Hidden role of ocean's microbes

A new study by a research team from the Woods Hole Oceanographic Institution (WHOI) and Columbia University reveals for the first time a marine phosphorus cycle that is much more complex than previously thought.

The work also highlights the important but previously hidden role that some microbial communities play in using and breaking down forms of this essential element.

A paper reporting the findings is published this week in the journal Science.

"A reason to be excited about this elegant study is in the paper's last sentence: 'the environmental, ecological and evolutionary controls ...remain completely unknown,'" says Don Rice, program director in the National Science Foundation's (NSF) Division of Ocean Sciences, which funded the research through its Chemical Oceanography Program. "There's still a lot we don't know about the sea."

The work is also supported by an NSF Dimensions of Biodiversity grant.

"This is an exciting new discovery that closes a fundamental knowledge gap in our understanding of the marine phosphorus cycle," says the paper's lead author Ben Van Mooy, a biochemist at WHOI.

Much like phosphorus-based fertilizers boost the growth of plants on land, phosphorus in the ocean promotes the production of microbes and tiny marine plants called phytoplankton, which compose the base of the marine food chain.

Phosphonate mystery

It's been unclear exactly how phytoplankton are using the most abundant forms of phosphorus found in the ocean--phosphates and a strange form of phosphorus called phosphonates.

"Phosphonates have always been a huge mystery," Van Mooy says.

"No one's been able to figure out exactly what they are, and more importantly, if they're made and consumed quickly by microbes, or if they're just lying around in the ocean."

To find out more about phosphonates and how microbes metabolize them, the researchers took samples of seawater at a series of stations during a research cruise from Bermuda to Barbados.

They added phosphate to the samples so they could see the microbes in action.

The research team used ion chromatography onboard ship for water chemistry analyses, which allowed the scientists to observe how quickly microbes reacted to the added phosphate in the seawater.

"The ion chromatograph [IC] separates out the different families of molecules," explains Van Mooy.

"We added radioactive phosphate, then isolated the phosphonate to see if the samples became radioactive, too. It's the radioactive technique that let us see how fast phosphate was transformed to phosphonate."

Enter the microbes

The researchers found that about 5 percent of the phosphate in the shallow water samples was taken up by the microbes and changed to phosphonates.

In deeper water samples, which were taken at depths of 40 and 150 meters (131 feet and 492 feet), about 15 to 20 percent of the phosphates became phosphonates.

"Although evidence of the cycling of phosphonates has been mounting for nearly a decade, these results show for the first time that microbes are producing phosphonates in the ocean, and that it is happening very quickly," says paper co-author Sonya Dyhrman of Columbia University.

"An exciting aspect of this study was the application of the IC method at sea. In near-real-time, we could tell that the phosphate we added was being transformed to phosphonate."

Better understanding of phosphorus cycle

A better understanding of phosphorus cycling in the oceans is important, as it affects the marine food web and, therefore, the ability of the oceans to absorb atmospheric carbon dioxide.

The researchers say that solving the mystery of phosphonates also reinforces the need to identify the full suite of phosphorus biochemicals being produced and metabolized by marine microbes, and what physiological roles they serve for these cells.

"Such work will help us further resolve the complexities of how this critical element is cycled in the ocean," Dyhrman adds.

###

Grants from the Simons Foundation also supported the work.

Media Contact

Cheryl Dybas
cdybas@nsf.gov
703-292-7734

 @NSF

http://www.nsf.gov 

Tiny marine plants play major role in phosphorus cycle | EurekAlert!

More articles from Earth Sciences:

nachricht New plate adds plot twist to ancient tectonic tale
15.08.2017 | Rice University

nachricht Global warming will leave different fingerprints on global subtropical anticyclones
14.08.2017 | Institute of Atmospheric Physics, Chinese Academy of Sciences

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>