Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers turn to the ocean to help unravel the mysteries of cloud formation

10.06.2015

In a study published today in ACS Central Science, a research team led by University of Wisconsin-Madison chemistry professor Timothy Bertram peels back the mysteries of the structures of tiny aerosol particles at the surface of the ocean.

The work shows how the particles' chemical composition influences their abilities to take in moisture from the air, which indicates whether the particle will help to form a cloud -- a key to many basic problems in climate prediction.


In order to investigate sea spray particles formed at the ocean-air boundary in nature, researchers used a 33-meter-long wave channel to replicate waves found in nature. They filled the wave channel, which is located at the Scripps Institution of Oceanography, with seawater from the ocean.

Courtesy of Christina McCluskey

To understand the Earth's climate, scientists must consider and measure both human-made environmental pollutants and naturally occurring processes that influence how much energy the planet absorbs from the sun or radiates back into space. One naturally occurring process that plays a big role in this delicate balance is the formation of clouds.

Clouds are made of tiny droplets of water. It has long been known that the droplets that make up clouds form around tiny nuclei -- grains of dust, salt or even microbial life.

Clouds help reflect solar energy back to space, but the process for a particle to seed a cloud can change depending on the natural setting. A particle must take up water from its surrounding environment in order to seed a cloud, but the particle's chemical composition may be very uniform or very diverse, affecting its ability to do so.

Bertram's group focuses on areas where chemistry significantly affects climate or the environment. And because oceans cover more than 70 percent of the Earth's surface, the UW-Madison researcher has focused on the ocean surface in order to better understand an important piece of the larger climate picture.

'While the emission of particulates from the ocean isn't nearly as strong as that from trucks, the majority of the Earth's surface is not covered by trucks,' Bertram says. 'The ocean may be a diffuse source (of these particles), but it's a very important source.'

In their new work, Bertram and colleagues' investigation began in a laboratory-based wave channel, which allowed them to replicate the types of sea spray aerosol particles found near ocean waves. They also studied particles from the actual ocean-air boundary. By mimicking ocean waves and sea spray in the wave channel, the researchers could gain insight into the structures and cloud-formation potential of particles in the open ocean.

The team then developed a new method that categorizes a diverse population of aerosol particles based on their likelihood of taking up water from the surrounding environment and forming a cloud. Previous approaches yielded one number to assess sea spray aerosol particles' ability to form clouds. The new method, however, provides a more precise measure by indicating the percentages of particles in each category, thus more properly accounting for particle-to-particle variability in cloud formation.

'The advancement is that this is general,' Bertram says. 'It's a framework people can use broadly to look at this question of the diversity of particulates and how they impact cloud formation.'

###

Collaborators include other researchers affiliated with the Center for Aerosol Impacts on Climate and the Environment at the University of California, San Diego; the University of Iowa; the Scripps Institution of Oceanography; and the University of California, Davis, as well as a researcher from NOAA's Pacific Marine Environmental Laboratory. Steven Schill, a graduate student in the Bertram group, is first author on the new study.

The National Science Foundation supported the work through the Center for Aerosol Impacts on Climate and the Environment.

Contact:

Timothy Bertram
tbertram@chem.wisc.edu
608-890-3422

Libby Dowdall
ldowdall@chem.wisc.edu
608-265-9814

http://www.wisc.edu 

Timothy Bertram | EurekAlert!

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Molecular volume control

22.08.2017 | Life Sciences

When fish swim in the holodeck

22.08.2017 | Life Sciences

Biochemical 'fingerprints' reveal diabetes progression

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>