Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers sequence seagrass genome, unlocking valuable resource

23.02.2016

UD scientist part of international team that published first fully sequenced Zostera marina

The University of Delaware's Pamela Green is part of an international consortium of researchers from 35 laboratories that have published the genome of the seagrass Zostera marina. It is believed to be the first marine angiosperm to be fully sequenced.


This is a meadow in Archipelago Sea, Finland.

Credit: C. Boström

The study, titled "The Genome of the Seagrass Zostera marina Reveals Angiosperm Adaptation to the Sea," was published in the scientific journal Nature and is featured on the cover of the print edition.

Seagrasses evolved from marine algae, the ancestors of land plants, and are the only flowering plants to have returned to the sea. In the marine environment, they provide a habitat and nursery ground for young fish and other marine organisms. Like their terrestrial counterparts, seagrasses are comprised of leaves, root systems, conductive tissue, flowers and seeds.

Seagrass meadows are part of soft-sediment, coastal ecosystems of all continents except Antarctica. They serve an important role in protecting the coastline from erosion and maintaining water clarity, while acting as a carbon sink by absorbing carbon dioxide from the atmosphere. Yet, seagrass meadows are threatened worldwide, and to date, many initiatives to restore degraded seagrass meadows have had limited success.

According to the researchers, a fully sequenced Z. marina genome is a valuable resource that can markedly advance and support a wide range of research, from work aimed at understanding the adaptation of marine ecosystems under climate warming and its role in carbon sequestration to unraveling the mechanisms of salt tolerance that may further inform assisted breeding of crop plants.

Green's contribution to the study involved investigating microRNAs (miRNAs) of Z. marina, in collaboration with Emanuele De Paoli, an assistant professor of genetics at University of Udine (Italy) and former postdoctoral researcher at UD.

MicroRNAs are a class of regulatory RNAs, molecules found in virtually all plants and animals that regulate gene expression and serve functions in numerous cellular pathways.

Although miRNAs can be studied by deeply sequencing the small RNAs themselves, as De Paoli, Green and collaborators had already done, a genome sequence provides an extremely valuable advantage, according to Green.

The Z. marina genome made it easier to distinguish bona fide miRNAs from other classes of small RNAs because it allowed for identification and characterization of miRNA-encoding genes, both those that were expected and those previously unknown. This new analysis clearly demonstrated that Z. marina lacks several miRNA genes that arose in related terrestrial species.

In contrast, it retained the oldest known miRNA specific to the important group of monocot plants to which Z. marina and several crop species, such as cereals, belong.

"Zostera marina or its direct ancestors appeared in evolution right after the entire monocot branch originated. Inspecting its genome can reveal genetic features, like the birth of a miRNA gene, which arose approximately around that important period of evolution and could have played a crucial role in determining biological innovation. We have identified one such event and it is very rewarding," said De Paoli, who is an expert in the computational analysis of miRNA genes, epigenetics, genome structure and evolution using next generation sequencing data.

"This study also opened new doors for future study by identifying the target genes which miRNAs could regulate. The hints are that some Z. marina miRNA-target associations could reveal novel regulatory mechanisms involved in development and other fundamental processes," said Green, the Unidel Crawford H. Greenewalt Professor of Plant and Soil Sciences.

Green is also a member of the faculty in the School of Marine Science and Policy in the College of Earth, Ocean, and Environment at UD, and holds joint appointments in the departments of Biological Sciences and Chemistry and Biochemistry.

"It was wonderful to participate in this consortium which gleaned many exciting insights from the first marine flowering plant to have its genome sequenced," she said.

Research in Green's laboratory at the Delaware Biotechnology Institute (DBI) focuses on post-transcriptional mechanisms that regulate the expression of genes in plants, marine organisms and human cells. She is particularly interested in the fate of mRNA molecules, which play a pivotal role in the gene expression process.

Zostera marina, also called eelgrass, is the most widely distributed seagrass throughout the northern hemisphere of the Pacific and Atlantic, ranging from the warm waters of southern Portugal to the frigid temperatures of northern Norway.

Eelgrass has adapted to the salty conditions of seawater, making it a useful vehicle for studying the relationship between the complex gene networks affecting temperature and salt tolerance.

The consortium researchers, led by Jeanine Olsen of the University of Groningen (Netherlands), first set out to produce and annotate a high quality genome sequence in order to better understand the genetic networks and the interaction of ecology and evolution in these plants.

What they learned was that in its evolution from a terrestrial to marine plant -- its "return to the sea" -- eelgrass made a host of unique adaptations.

For example, eelgrass no longer has stomata, microscopic pores that land plants use to breath, or any of the genes involved in development of the specialized cells of these structures. This means that Z. marina is bound to the sea.

Additionally, the cell walls of eelgrass no longer resemble normal plant cell walls, rather, they are more like that of seaweeds or algae.

Plant signaling and defense are also different. Genes in land plants that produce volatile compounds have also disappeared from the Z. marina genome. Pollination of the seagrass flower occurs entirely underwater, where there are no insects to help. As for predators, however, there are still plenty of small grazers that scrape algae off the leaves.

An overarching question for the international research team is how fast eelgrass can adapt to rapid climate change. The fact that Z. marina grows along the coastline from Portugal to Scandinavia is being used as a natural experiment to investigate adaptation to warmer or colder water, as well as to salinity, ocean acidification and light.

Additionally, learning more about eco-evolutionary interactions is relevant to the development of genomics-based, early-warning indicators that may foreshadow seagrass ecosystem shifts and tipping points, the researchers said.

Media Contact

Peter Bothum
pbothum@udel.edu
302-831-1418

 @UDResearch

http://www.udel.edu 

Peter Bothum | EurekAlert!

Further reports about: Seagrass Zostera marina eelgrass genes genome sequence miRNA salt tolerance small RNAs

More articles from Earth Sciences:

nachricht From volcano's slope, NASA instrument looks sky high and to the future
27.04.2017 | NASA/Goddard Space Flight Center

nachricht Penn researchers quantify the changes that lightning inspires in rock
27.04.2017 | University of Pennsylvania

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>