Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers sequence seagrass genome, unlocking valuable resource


UD scientist part of international team that published first fully sequenced Zostera marina

The University of Delaware's Pamela Green is part of an international consortium of researchers from 35 laboratories that have published the genome of the seagrass Zostera marina. It is believed to be the first marine angiosperm to be fully sequenced.

This is a meadow in Archipelago Sea, Finland.

Credit: C. Boström

The study, titled "The Genome of the Seagrass Zostera marina Reveals Angiosperm Adaptation to the Sea," was published in the scientific journal Nature and is featured on the cover of the print edition.

Seagrasses evolved from marine algae, the ancestors of land plants, and are the only flowering plants to have returned to the sea. In the marine environment, they provide a habitat and nursery ground for young fish and other marine organisms. Like their terrestrial counterparts, seagrasses are comprised of leaves, root systems, conductive tissue, flowers and seeds.

Seagrass meadows are part of soft-sediment, coastal ecosystems of all continents except Antarctica. They serve an important role in protecting the coastline from erosion and maintaining water clarity, while acting as a carbon sink by absorbing carbon dioxide from the atmosphere. Yet, seagrass meadows are threatened worldwide, and to date, many initiatives to restore degraded seagrass meadows have had limited success.

According to the researchers, a fully sequenced Z. marina genome is a valuable resource that can markedly advance and support a wide range of research, from work aimed at understanding the adaptation of marine ecosystems under climate warming and its role in carbon sequestration to unraveling the mechanisms of salt tolerance that may further inform assisted breeding of crop plants.

Green's contribution to the study involved investigating microRNAs (miRNAs) of Z. marina, in collaboration with Emanuele De Paoli, an assistant professor of genetics at University of Udine (Italy) and former postdoctoral researcher at UD.

MicroRNAs are a class of regulatory RNAs, molecules found in virtually all plants and animals that regulate gene expression and serve functions in numerous cellular pathways.

Although miRNAs can be studied by deeply sequencing the small RNAs themselves, as De Paoli, Green and collaborators had already done, a genome sequence provides an extremely valuable advantage, according to Green.

The Z. marina genome made it easier to distinguish bona fide miRNAs from other classes of small RNAs because it allowed for identification and characterization of miRNA-encoding genes, both those that were expected and those previously unknown. This new analysis clearly demonstrated that Z. marina lacks several miRNA genes that arose in related terrestrial species.

In contrast, it retained the oldest known miRNA specific to the important group of monocot plants to which Z. marina and several crop species, such as cereals, belong.

"Zostera marina or its direct ancestors appeared in evolution right after the entire monocot branch originated. Inspecting its genome can reveal genetic features, like the birth of a miRNA gene, which arose approximately around that important period of evolution and could have played a crucial role in determining biological innovation. We have identified one such event and it is very rewarding," said De Paoli, who is an expert in the computational analysis of miRNA genes, epigenetics, genome structure and evolution using next generation sequencing data.

"This study also opened new doors for future study by identifying the target genes which miRNAs could regulate. The hints are that some Z. marina miRNA-target associations could reveal novel regulatory mechanisms involved in development and other fundamental processes," said Green, the Unidel Crawford H. Greenewalt Professor of Plant and Soil Sciences.

Green is also a member of the faculty in the School of Marine Science and Policy in the College of Earth, Ocean, and Environment at UD, and holds joint appointments in the departments of Biological Sciences and Chemistry and Biochemistry.

"It was wonderful to participate in this consortium which gleaned many exciting insights from the first marine flowering plant to have its genome sequenced," she said.

Research in Green's laboratory at the Delaware Biotechnology Institute (DBI) focuses on post-transcriptional mechanisms that regulate the expression of genes in plants, marine organisms and human cells. She is particularly interested in the fate of mRNA molecules, which play a pivotal role in the gene expression process.

Zostera marina, also called eelgrass, is the most widely distributed seagrass throughout the northern hemisphere of the Pacific and Atlantic, ranging from the warm waters of southern Portugal to the frigid temperatures of northern Norway.

Eelgrass has adapted to the salty conditions of seawater, making it a useful vehicle for studying the relationship between the complex gene networks affecting temperature and salt tolerance.

The consortium researchers, led by Jeanine Olsen of the University of Groningen (Netherlands), first set out to produce and annotate a high quality genome sequence in order to better understand the genetic networks and the interaction of ecology and evolution in these plants.

What they learned was that in its evolution from a terrestrial to marine plant -- its "return to the sea" -- eelgrass made a host of unique adaptations.

For example, eelgrass no longer has stomata, microscopic pores that land plants use to breath, or any of the genes involved in development of the specialized cells of these structures. This means that Z. marina is bound to the sea.

Additionally, the cell walls of eelgrass no longer resemble normal plant cell walls, rather, they are more like that of seaweeds or algae.

Plant signaling and defense are also different. Genes in land plants that produce volatile compounds have also disappeared from the Z. marina genome. Pollination of the seagrass flower occurs entirely underwater, where there are no insects to help. As for predators, however, there are still plenty of small grazers that scrape algae off the leaves.

An overarching question for the international research team is how fast eelgrass can adapt to rapid climate change. The fact that Z. marina grows along the coastline from Portugal to Scandinavia is being used as a natural experiment to investigate adaptation to warmer or colder water, as well as to salinity, ocean acidification and light.

Additionally, learning more about eco-evolutionary interactions is relevant to the development of genomics-based, early-warning indicators that may foreshadow seagrass ecosystem shifts and tipping points, the researchers said.

Media Contact

Peter Bothum


Peter Bothum | EurekAlert!

Further reports about: Seagrass Zostera marina eelgrass genes genome sequence miRNA salt tolerance small RNAs

More articles from Earth Sciences:

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

nachricht UM researchers study vast carbon residue of ocean life
19.10.2016 | University of Miami Rosenstiel School of Marine & Atmospheric Science

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>