Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers reveal how microbes cope in phosphorus-deficient tropical soil

23.01.2018

A team led by the Department of Energy's Oak Ridge National Laboratory has uncovered how certain soil microbes cope in a phosphorus-poor environment to survive in a tropical ecosystem. Their novel approach could be applied in other ecosystems to study various nutrient limitations and inform agriculture and terrestrial biosphere modeling.

Phosphorus is a critical nutrient for global biological processes, such as collecting the sun's energy during photosynthesis and degrading plant debris and soil organic matter. Most tropical ecosystems endure long-term weathering that leaches phosphorus from soil.


An Oak Ridge National Laboratory-led research team found genes for production of phytase enzymes that would be released by tropical soil microbes. Phytase enzymes will attack phytate molecules, releasing much needed phosphate molecules for the microbes' survival. The soil samples were collected in phosphorus-rich and -poor experimental sites at the Smithsonian Tropical Research Institute in the Republic of Panama.

Credit: Melanie Mayes and Andy Sproles/Oak Ridge National Laboratory, U.S. Dept. of Energy

The ORNL-led team set out to discover how soil microbial communities respond to the lack of phosphorus and other nutrient deficiencies at the molecular level.

They collected soil samples at the Smithsonian Tropical Research Institute in the Republic of Panama, an experimental field site with phosphorus-rich plots and unfertilized control plots.

"This was the perfect place to test the optimal foraging theory, which is a model that helps predict an organism's behavior when searching for resources," said Chongle Pan, ORNL senior staff scientist and joint associate professor at the University of Tennessee. "We learned how this theory plays out when applied to microbial communities as they compete for nutrients."

The team analyzed the behaviors of many genes and proteins, and in the phosphorus-deficient, untreated soil, they found an increased number of genes responsible for producing phosphorus-acquiring enzymes. They also discovered more than 100 genes that work to pull phosphorus from phytate, which is a complex organic compound found in plant tissue.

"Finding so many genes to break apart and transport such a complex molecule tells us that microbes are hungry for phosphorus in untreated soil," said Melanie Mayes, an ORNL senior staff scientist who studies multi-scale environmental processes.

Conversely, she noted that when phosphorus was plentiful, more genes needed to acquire complex carbon compounds were present. "The microbial community prioritizes the breakdown of the most needed nutrients, focusing efforts on the most limiting element to balance their overall nutritional needs," she said.

The team ran each soil sample through a series of rigorous and comprehensive analyses. The DOE Joint Genome Institute conducted deep sequencing of the soils' metagenomes, or genetic material recovered directly from the soil. ORNL then used mass spectrometry and metaproteomics to identify more than 7,000 proteins in each sample.

ORNL's Titan supercomputer quickly analyzed the large amounts of metagenomics and metaproteomics data, comparing microbial activities in phosphorus-rich and -poor soils. Environmental Molecular Sciences Laboratory scientists further characterized the soils' organic matter at Pacific Northwest National Laboratory.

These unique tools working together enabled one of the deepest proteogenomics studies done on soil microbial communities, according to Pan.

The ORNL-led team plans to continue their research to characterize the ecology and evolution of soil microbial communities in nutrient-poor environments, which has applications in agriculture and terrestrial biosphere modeling worldwide. Additionally, Mayes and her team are incorporating metagenomics information into nutrient cycling models under a DOE Early Career Research Program Award.

###

Results from their three-year study titled, "Community Proteogenomics Reveals the Systemic Impact of Phosphorus Availability on Microbial Functions in Tropical Soil," were published in Nature Ecology & Evolution.

The paper's coauthors included Qiuming Yao, Zhou Li, Yang Song, Melanie A. Mayes and Chongle Pan of ORNL; S. Joseph Wright and Benjamin L. Turner of the Smithsonian Tropical Research Institute; Terry C. Hazen, University of Tennessee-ORNL Governor's Chair for Environmental Biotechnology; Xuan Guo of UT; Susannah G. Tringe of the DOE Joint Genome Institute; and Malak M. Tfaily and Ljiljana Paša-Tolic of Pacific Northwest National Laboratory.

The research was supported by the Laboratory Directed Research and Development program at ORNL. Metagenomic sequencing was conducted by the DOE Joint Genome Institute and soil organic matter analyses were performed using Fourier-transform ion cyclotron resonance mass spectrometry by PNNL's Environmental Molecular Sciences Laboratory, both DOE Office of Science User Facilities. This work also leveraged the Oak Ridge Leadership Computing Facility, a DOE Office of Science User Facility.

ORNL is managed by UT-Battelle for DOE's Office of Science. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit http://science.energy.gov/.

Media Contact

Sara Shoemaker
shoemakerms@ornl.gov
865-576-9219

 @ORNL

http://www.ornl.gov 

Sara Shoemaker | EurekAlert!

Further reports about: Genome ORNL genes microbes microbial communities nutrient phosphorus tropical

More articles from Earth Sciences:

nachricht AWI researchers measure a record concentration of microplastic in arctic sea ice
24.04.2018 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Climate change in a warmer-than-modern world: New findings of Kiel Researchers
24.04.2018 | Christian-Albrechts-Universität zu Kiel

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Getting electrons to move in a semiconductor

25.04.2018 | Physics and Astronomy

Reconstructing what makes us tick

25.04.2018 | Physics and Astronomy

Cheap 3-D printer can produce self-folding materials

25.04.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>