Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers measure record erosion on Alaskan riverbank

28.01.2016

Itkillik River eats into the thawing riverbank at an average rate of 19 metres per year.

According to estimates, Alaska's thawing permafrost soils cost the USA several 100 million dollars every decade – primarily because airports, roads, pipelines and set-tlements require relocation as a result of sinking ground and eroding river banks.


A crack, which has formed at the eroding plateau (Itkillit river, Northern Alaska)

Alfred Wegener Institute / Mikhail Kanevskiy, UAF

An international team of researchers has now measured riverbank erosion rates, which exceed all previous records, along the Itkillik River in Alaska's north. In a stretch of land where the ground contains a particularly large quantity of ice the Itkillik River eats into the river bank at 19 metres per year, the researchers report in a study recently published in the journal Geomorphology.

'These results demonstrate that permafrost thawing is not exclusively a slow process, but that its consequences can be felt immediately', says permafrost researcher Dr Jens Strauss from the Pots-dam research unit of the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI).

Together with colleagues from the USA, Canada and Russia he investigated the Itkillik River at a loca-tion where the river cuts through a plateau, and the subsurface of which consists to 80 percent of pure ice and to 20 percent of frozen sediment.

'This ground ice is between 13,000 and more than 50,000 years old, extends column-like to depths of more than 40 metres and in the past stabilised the riverbank zone', says Jens Strauss.

However, as the scientists' research work, which extended over several years, demonstrated, these stabilisation mechanisms fail if two factors coincide: (1) the river carries flowing water over an ex-tended period; (2) the riverbank consists of a steep cliff, the front of which faces south and therefore is exposed to a lot of direct sunlight.

Jens Strauss: 'There are two reasons for the fast and, especially, enduring, decay of this cliff. On the one hand the river water is warmer than the permafrost, thaws it and immediately transports the falling material away. This transport away is particularly fast if there is a very large amount of ice in the ground.'

And on the other hand the cliff is thawed by the sunlight. 'Although the mean annual temperature in this region is minus twelve degrees Celsius, in the summer sunlight it becomes so warm that lumps of ice and mud flow down the slope', reports the study's lead author Mikhail Kanevskiy from the Uni-versity of Alaska Fairbanks.

In all, in the 2007 to 2011 period, the approximately 700 metre long and 35 metre high cliff retreated up to 100 metres. A land area of approximately 31,000 square metres was lost in this time. This cor-responds to the size of around 4.3 football fields. Converted to a mass of ice and soil, the Itkillik River carried away 70,000 tonnes of material per year – including 880 tonnes of organic material (organic carbon), previously stored in the permafrost soil.

In addition, in August 2007 the scientists witnessed how, in only a few days, up to 100 metre long and 13 metre deep fissures formed in the plateau and an 800 square metre block collapsed into the river. 'Such failures follow a defined pattern. First, the river begins to thaw the cliff and scours an overhang at the base. From here, fissures form in the soil following the large ice columns. The block then disconnects from the cliff, piece by piece, and collapses', explains Jens Strauss.

Luckily, the section of the river with the high erosion rates lies in a very sparsely populated area, so that neither villages nor important structures such as roads or buildings are endangered. However, the magnitude of the riverbank erosion gives Jens Strauss food for thought: 'The rate at which a riverbank retreats in permafrost regions depends on the ice content of the soil and other geograph-ical factors. In view of the increasing mean temperatures in the Arctic, our Itkillik River example clearly demonstrates the speed at which erosion can take place.'

The objective now is to apply this newly gained knowledge when planning new settlements, power routes and transport links, for example. 'What's more, the erosion impairs water quality in the rivers. A fact that can become a problem for all those communities that produce their potable water by treating river water', says Jens Strauss.

Notes for Editors:

The study was published with the following title in the journal Geomorphology:
• Mikhail Kanevskiy, Yuri Shur, Jens Strauss, Torre Jorgenson, Daniel Fortier, Eva Stephani, Alexan-der Vasiliev: Patterns and rates of riverbank erosion involving ice-rich permafrost (yedoma) in northern Alaska, Geomorphology, doi:10.1016/j.geomorph.2015.10.023 (http://www.sciencedirect.com/science/article/pii/S0169555X15301872 )

Printable photographs can be found in the online version of this press release at: http://www.awi.de/nc/en/about-us/service/press.html

Your scientific contact at the Alfred Wegener Institute in Potsdam is Dr Jens Strauss, phone +49 (0)331 288-2173 (e-mail: Jens.Strauss(at)awi.de).

Your contact in the Communications and Media Department is Sina Löschke, phone +49 (0)471 4831-2008 (e-mail: medien(at)awi.de).

The Alfred Wegener Institute researches in the Arctic, the Antarctic and oceans in the central and high latitudes. It coordinates polar research in Germany and provides important infrastructure such as the research icebreaker Polarstern and stations in the Arctic and Antarctic for the international science community. The Alfred Wegener Institute is one of the 18 research centres belonging to the Helmholtz Association, which is Germany's largest scientific organisation.

Ralf Röchert | idw - Informationsdienst Wissenschaft
Further information:
http://www.awi.de

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>