Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers make improbable discovery

17.07.2017

Researchers make improbable discovery of deep-sea coral reefs in 'hostile' Pacific Ocean depths

Scientists had long believed that the waters of the Central and Northeast Pacific Ocean were inhospitable to certain species of deep-sea corals, but a marine biologist's discovery of an odd chain of reefs suggests there are mysteries about the development and durability of coral colonies yet to be uncovered.


Scientists ask how it's possible that certain coral reefs are thriving in this location.

Credit: Amy Baco-Taylor

Scientist Amy Baco-Taylor of Florida State University (FSU), in collaboration with researchers from Texas A&M University, found the reefs during an autonomous underwater vehicle survey of the seamounts of the Northwestern Hawaiian Islands.

In a paper published today in the journal Scientific Reports, Baco-Taylor and her team document the reefs. They also discuss possible explanations for the reefs' appearance in areas considered hostile to large communities of scleractinia -- small, stony corals that settle on the seabed and grow bony skeletons to protect their soft bodies.

"I've been exploring the deep sea around the Hawaiian Archipelago since 1998, and have seen enough to know that the presence of the reefs at these depths was definitely unexpected," Baco-Taylor said.

Some ocean areas, such as the North Atlantic and South Pacific, are particularly fertile habitats for deep-sea scleractinian reefs, but a combination of factors led scientists to believe that finding these coral colonies was exceedingly unlikely in the deep waters of the North Pacific.

The North Pacific's low level of aragonite, an essential mineral in the formation of scleractinian skeletal structures, makes it difficult for the coral polyps to develop their rugged skeletons.

In addition, North Pacific carbonate dissolution rates, a measure of the pace at which carbonate substances such as coral skeletons dissolve, exceed those of the more amenable North Atlantic by a factor of two.

In other words, said Baco-Taylor, the reefs simply should not exist in the North Pacific.

"Even if the corals could overcome low aragonite saturation and build up robust skeletons, there are areas on the reefs that are just exposed skeleton, and those should be dissolving," Baco-Taylor said. "We shouldn't be finding an accumulation of reefs."

The researchers suggest potential reasons for the improbable success of these hardy reefs. Among them, higher concentrations of chlorophyll in the areas of reef growth suggest that an abundance of food may provide the excess energy needed for calcification in waters with low aragonite saturation.

But that doesn't tell the whole story.

It doesn't explain "the unusual depths of the reefs, or why, moving to the northwest along the seamounts, they get shallower," Baco-Taylor said. "There's still a mystery as to why these reefs are here."

The unexpected discovery of the reefs has prompted some scientists to reconsider the effects of ocean acidification on vulnerable coral colonies. At a time when stories about the wholesale demise of reefs around the world are sparking alarm, these findings may offer a glimmer of hope.

"These results show that the effects of ocean acidification on deep-water corals may not be as severe as predicted," said David Garrison, a program director in the National Science Foundation's Division of Ocean Sciences, which funded the research. "What accounts for the resilience of these corals on seamounts in the Pacific, however, remains to be determined."

The reefs occur primarily outside the protected Papahanamoukuakea Marine National Monument, which means they exist in areas where destructive trawling is permitted and active.

Researcher Nicole Morgan of FSU, also a co-author of the paper, said that locating the survivalist reefs is crucial because it gives scientists a chance to preserve them.

"We want to know where these habitats are so that we can protect them," Morgan said. "We don't want important fisheries to collapse, which often happens when reefs disappear."

The discovery of the puzzling reefs shows that there are still gaps in scientists' understanding of the deep sea. The success of hypothesis-driven exploration, like the kind that produced these findings, demonstrates the importance of continuing to strike out into the unknown, said Baco-Taylor.

"These results highlight the importance of doing research in unexplored areas, or 'exploration science,' as we like to call it," said Brendan Roark of Texas A&M University, project co-principal investigator with Baco-Taylor.

If there are additional similar reefs sprinkled across the Northwestern Hawaiian seamounts, Baco-Taylor wants to find them. Further study of these reefs could reveal important information about how they might endure in a time of climbing carbon dioxide levels and increasing ocean acidification.

"If more of these reefs are there, that would run counter to what ocean acidification and carbonate chemistry dictate," Baco-Taylor said.

"It leaves us with some big questions: Is there something we're not understanding? How is the existence of these reefs possible?"

Media Contact

Cheryl Dybas
cdybas@nsf.gov

 @NSF

http://www.nsf.gov 

Cheryl Dybas | EurekAlert!

Further reports about: coral colonies corals deep sea ocean acidification seamounts skeletons

More articles from Earth Sciences:

nachricht Colorado River's connection with the ocean was a punctuated affair
16.11.2017 | University of Oregon

nachricht Researchers create largest, longest multiphysics earthquake simulation to date
14.11.2017 | Gauss Centre for Supercomputing

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>