Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers make improbable discovery

17.07.2017

Researchers make improbable discovery of deep-sea coral reefs in 'hostile' Pacific Ocean depths

Scientists had long believed that the waters of the Central and Northeast Pacific Ocean were inhospitable to certain species of deep-sea corals, but a marine biologist's discovery of an odd chain of reefs suggests there are mysteries about the development and durability of coral colonies yet to be uncovered.


Scientists ask how it's possible that certain coral reefs are thriving in this location.

Credit: Amy Baco-Taylor

Scientist Amy Baco-Taylor of Florida State University (FSU), in collaboration with researchers from Texas A&M University, found the reefs during an autonomous underwater vehicle survey of the seamounts of the Northwestern Hawaiian Islands.

In a paper published today in the journal Scientific Reports, Baco-Taylor and her team document the reefs. They also discuss possible explanations for the reefs' appearance in areas considered hostile to large communities of scleractinia -- small, stony corals that settle on the seabed and grow bony skeletons to protect their soft bodies.

"I've been exploring the deep sea around the Hawaiian Archipelago since 1998, and have seen enough to know that the presence of the reefs at these depths was definitely unexpected," Baco-Taylor said.

Some ocean areas, such as the North Atlantic and South Pacific, are particularly fertile habitats for deep-sea scleractinian reefs, but a combination of factors led scientists to believe that finding these coral colonies was exceedingly unlikely in the deep waters of the North Pacific.

The North Pacific's low level of aragonite, an essential mineral in the formation of scleractinian skeletal structures, makes it difficult for the coral polyps to develop their rugged skeletons.

In addition, North Pacific carbonate dissolution rates, a measure of the pace at which carbonate substances such as coral skeletons dissolve, exceed those of the more amenable North Atlantic by a factor of two.

In other words, said Baco-Taylor, the reefs simply should not exist in the North Pacific.

"Even if the corals could overcome low aragonite saturation and build up robust skeletons, there are areas on the reefs that are just exposed skeleton, and those should be dissolving," Baco-Taylor said. "We shouldn't be finding an accumulation of reefs."

The researchers suggest potential reasons for the improbable success of these hardy reefs. Among them, higher concentrations of chlorophyll in the areas of reef growth suggest that an abundance of food may provide the excess energy needed for calcification in waters with low aragonite saturation.

But that doesn't tell the whole story.

It doesn't explain "the unusual depths of the reefs, or why, moving to the northwest along the seamounts, they get shallower," Baco-Taylor said. "There's still a mystery as to why these reefs are here."

The unexpected discovery of the reefs has prompted some scientists to reconsider the effects of ocean acidification on vulnerable coral colonies. At a time when stories about the wholesale demise of reefs around the world are sparking alarm, these findings may offer a glimmer of hope.

"These results show that the effects of ocean acidification on deep-water corals may not be as severe as predicted," said David Garrison, a program director in the National Science Foundation's Division of Ocean Sciences, which funded the research. "What accounts for the resilience of these corals on seamounts in the Pacific, however, remains to be determined."

The reefs occur primarily outside the protected Papahanamoukuakea Marine National Monument, which means they exist in areas where destructive trawling is permitted and active.

Researcher Nicole Morgan of FSU, also a co-author of the paper, said that locating the survivalist reefs is crucial because it gives scientists a chance to preserve them.

"We want to know where these habitats are so that we can protect them," Morgan said. "We don't want important fisheries to collapse, which often happens when reefs disappear."

The discovery of the puzzling reefs shows that there are still gaps in scientists' understanding of the deep sea. The success of hypothesis-driven exploration, like the kind that produced these findings, demonstrates the importance of continuing to strike out into the unknown, said Baco-Taylor.

"These results highlight the importance of doing research in unexplored areas, or 'exploration science,' as we like to call it," said Brendan Roark of Texas A&M University, project co-principal investigator with Baco-Taylor.

If there are additional similar reefs sprinkled across the Northwestern Hawaiian seamounts, Baco-Taylor wants to find them. Further study of these reefs could reveal important information about how they might endure in a time of climbing carbon dioxide levels and increasing ocean acidification.

"If more of these reefs are there, that would run counter to what ocean acidification and carbonate chemistry dictate," Baco-Taylor said.

"It leaves us with some big questions: Is there something we're not understanding? How is the existence of these reefs possible?"

Media Contact

Cheryl Dybas
cdybas@nsf.gov

 @NSF

http://www.nsf.gov 

Cheryl Dybas | EurekAlert!

Further reports about: coral colonies corals deep sea ocean acidification seamounts skeletons

More articles from Earth Sciences:

nachricht World’s oldest known oxygen oasis discovered
18.01.2018 | Eberhard Karls Universität Tübingen

nachricht A close-up look at an uncommon underwater eruption
11.01.2018 | Woods Hole Oceanographic Institution

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>