Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research spotlights a previously unknown microbial 'drama' playing in the Southern Ocean

31.07.2015

Discovery highlights both competition and cooperation between algae and bacteria for iron and vitamins that may have consequences for life in a warming ocean

A team of marine researchers funded by the National Science Foundation (NSF) has discovered a three-way conflict raging at the microscopic level in the frigid waters off Antarctica over natural resources such as vitamins and iron.


Electron micrograph of an Antarctic sea ice diatom, Amphiprora, with attached bacterial cells, illustrating the association between diatoms and bacteria in the Southern Ocean ecosystem

Credit: Greg Wanger

The competition has important implications for understanding the fundamental workings of globally significant food webs of the Southern Ocean, home to such iconic Antarctic creatures as penguins, seals, and orcas.

At the base of that food web are phytoplankton, single-celled organisms that survive by turning sunlight into food sources such as sugars and carbohydrates. Oceanographers have long recognized that iron fertilization in the Southern Ocean will drive phytoplankton blooms.

According to Andrew Allen, the senior author on the paper, the new research indicates that particular groups of bacteria, perhaps specifically cultivated by phytoplankton, are also important for regulating the magnitude of phytoplankton blooms. The bacteria also help sustain the phytoplankton by supplying them with vitamin B12.

Allen is jointly affiliated with the Scripps Institution of Oceanography (SIO) at the University of California, San Diego, and the Maryland-based J. Craig Venter Institute (JCVI).

The new findings, which were supported in part by an award from the Division of Polar Programs in NSF's Geosciences Directorate as well as by the Gordon and Betty Moore Foundation, may also be key to understanding how the vastly productive polar ecosystem might respond to future change caused by warming of the oceans.

The research was published this week in the Proceedings of the National Academy of Sciences.

Phytoplankton and bacteria form the base of the marine food web. The Southern Ocean encircling Antarctica is home to massive phytoplankton populations, and scientists have long considered their growth to be controlled primarily by the availability of iron and light.

"Through a combination of field experiments and sequencing, we have obtained a new view of the microbial interactions underpinning a highly productive ecosystem," said Allen.

The new research also may cause biologists to examine long-standing assumptions about the ecological balance of microbial communities in the Southern Ocean.

"I think this study also illustrates the eye-opening sensitivity of marine phytoplankton and bacteria to very minor additions of scarce micro-nutrients over very short--hourly--time scales," said Erin Bertrand, a former JCVI and SIO researcher and Division of Polar Programs' post-doctoral fellow, who is now an assistant professor at Dalhousie University in Halifax, Nova Scotia.

Bertrand, the lead author of the study added that "this suggests that these marine ecosystems are naturally poised to respond swiftly to changes in availability of these nutrients. It's likely that these states of resource boom and bust are a common, perhaps critical, feature of this remote environment."

With this new understanding of the nature of the interactions between microorganisms in the polar ocean and the careful balance of competitive and cooperative behaviors that exist in this key ecosystem, Allen noted, researchers can work towards predicting how these relationships might change in the future.

The team's findings are based on research supported by the U.S. Antarctic Program in and around McMurdo Station, the largest year-round research station in Antarctica. NSF manages the U.S. Antarctic Program.

Flying aboard helicopters based at McMurdo, the research team ventured out to the edge of the sea ice in McMurdo sound, where they carefully collected water samples from the sunlit surface and returned them to the Albert P. Science and Engineering Center at McMurdo, in order to perform experiments.

The researchers learned that although the water appeared teeming with a particular type of phytoplankton, called diatoms, the diatoms were malnourished.

Unlike most regions of the global ocean which do not contain sufficient nitrogen or phosphorous for sustained phytoplankton growth, diatoms in the remote waters of McMurdo Sound were starving from lack of iron and deficiency of vitamin B12.

"Just like humans, phytoplankton require vitamins, including vitamin B12, to survive," said Bertrand.

She added, "We've shown that the phytoplankton in McMurdo Sound acquire this precious resource from a very specific group of bacteria. Those bacteria, in turn, appear to depend directly on phytoplankton to supply them with food and energy."

Results of the study, however, suggest that here is where it gets messy.

A different group of bacteria, also relying on the phytoplankton for food and energy, appear to compete with the diatoms for the precious vitamin, and all three groups of microbes are competing for iron, which, due to the extreme remoteness of the Southern Ocean, is a scarce and consequently invaluable resource.

The result, the researchers said, is a new picture of a precariously balanced system, full of microbial drama over the competiton for survival.

The team further confirmed that a large portion of the B12 supply in the Southern Ocean appears to be produced by a particular group of bacteria belonging to the Oceanospirllaceae. This aspect of this study was facilitated by collaboration with researchers at the University of Rhode Island (URI) and the Marine Biological Laboratory in Woods Hole, Mass. which have been conducting studies on bacteria in and around the Amundsen Sea, another region of the Southern Ocean.

Media Contact

Peter West
pwest@nsf.gov
703-292-7530

 @NSF

http://www.nsf.gov 

Peter West | EurekAlert!

Further reports about: Antarctic Antarctica Ecosystem Ocean Polar bacteria blooms diatoms microbial phytoplankton blooms

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>