Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Higher sea level may come sooner than expected

18.10.2007
Global Environmental Change. The Role Research on Greenland ice yields new view of global warming.

By studying 120,000-year-old layers in the ice of Greenland, researchers have determined that the ice cover seems to be able to survive a warmer climate better than was previously believed. But at the same time they have found signs that the changes that are nevertheless happening will occur at an unexpectedly rapid rate. The level of the global seas may therefore rise faster than was previously thought.

One example of rapid change was found by scientists who were studying a so-called ice stream, ice that moves like a river through the rest of the inland ice and often forms icebergs at the mouth, so-called calving.

“In just two-three years the speed of a large ice stream nearly doubled. This means that we have underestimated the rapid changes that may ensue from the amounts of ice leaving the ice each year,” says Dorthe Dahl-Jensen, a professor at the Niels Bohr Institute at Copenhagen University. Dorthe Dahl-Jensen is taking part this week in the climate conference “Global Environmental Change: The Role of the Arctic”, arranged by the European Science Foundation, the Swedish Research Council, and the Research Council Formas (Sweden).

Dorthe Dahl-Jensen’s research also indicates that the inland ice can cope with a warmer climate considerably better than previous models calculated. Dorthe Dahl-Jensen and her colleagues are now updating the base for these models, for example by studying how ice moved during the so-called Eem Warm Period.

During the Eem Period, some 120,000 years ago, it was on average several degrees warmer than at present. This warmer climate lasted many thousand years. Scientists have been able to determine this using some dozen parameters, including the oxygen content of the ice. They have also taken DNA samples from under the ice cover. The DNA samples show that it was about 400,000 years ago that inland Greenland was last bare ground. By combining these data, Dorthe Dahl-Jensen has created an updated model that shows that a great deal of the inland ice can remain in place even through a long period of warmer climate than we have had had in modern times thus far.

“We are now approaching the climate and the temperatures that prevailed during the Eem Period,” says Dorthe Dahl-Jensen. “In other words, this research is not about abstract reasoning but rather about something that may soon be a concrete reality. The advantage of researching the inland ice is that we can study how the ice was actually impacted by earlier warm periods and compare this to the models we have for calculating what the future ice cover might look like. If the model fits the Eem Period, then I can rely on the model.”

Dorthe Dahl-Jensen stresses the importance of having reliable models when researchers present their forecasts to politicians and the general public.

“We scientists mustn’t be ‘fortune-tellers’; we have to be ‘sages.’ We must absolutely not use models that exaggerate the dangers of climate change. We would lose all credibility. That is precisely why this type of research is crucial, since it can be used to confirm or modify the models we researchers present to society.

Anna Karin Svenningsson | alfa
Further information:
http://www.vr.se
http://www.su.se

More articles from Earth Sciences:

nachricht Predicting unpredictability: Information theory offers new way to read ice cores
07.12.2016 | Santa Fe Institute

nachricht Sea ice hit record lows in November
07.12.2016 | University of Colorado at Boulder

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>