Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Higher sea level may come sooner than expected

18.10.2007
Global Environmental Change. The Role Research on Greenland ice yields new view of global warming.

By studying 120,000-year-old layers in the ice of Greenland, researchers have determined that the ice cover seems to be able to survive a warmer climate better than was previously believed. But at the same time they have found signs that the changes that are nevertheless happening will occur at an unexpectedly rapid rate. The level of the global seas may therefore rise faster than was previously thought.

One example of rapid change was found by scientists who were studying a so-called ice stream, ice that moves like a river through the rest of the inland ice and often forms icebergs at the mouth, so-called calving.

“In just two-three years the speed of a large ice stream nearly doubled. This means that we have underestimated the rapid changes that may ensue from the amounts of ice leaving the ice each year,” says Dorthe Dahl-Jensen, a professor at the Niels Bohr Institute at Copenhagen University. Dorthe Dahl-Jensen is taking part this week in the climate conference “Global Environmental Change: The Role of the Arctic”, arranged by the European Science Foundation, the Swedish Research Council, and the Research Council Formas (Sweden).

Dorthe Dahl-Jensen’s research also indicates that the inland ice can cope with a warmer climate considerably better than previous models calculated. Dorthe Dahl-Jensen and her colleagues are now updating the base for these models, for example by studying how ice moved during the so-called Eem Warm Period.

During the Eem Period, some 120,000 years ago, it was on average several degrees warmer than at present. This warmer climate lasted many thousand years. Scientists have been able to determine this using some dozen parameters, including the oxygen content of the ice. They have also taken DNA samples from under the ice cover. The DNA samples show that it was about 400,000 years ago that inland Greenland was last bare ground. By combining these data, Dorthe Dahl-Jensen has created an updated model that shows that a great deal of the inland ice can remain in place even through a long period of warmer climate than we have had had in modern times thus far.

“We are now approaching the climate and the temperatures that prevailed during the Eem Period,” says Dorthe Dahl-Jensen. “In other words, this research is not about abstract reasoning but rather about something that may soon be a concrete reality. The advantage of researching the inland ice is that we can study how the ice was actually impacted by earlier warm periods and compare this to the models we have for calculating what the future ice cover might look like. If the model fits the Eem Period, then I can rely on the model.”

Dorthe Dahl-Jensen stresses the importance of having reliable models when researchers present their forecasts to politicians and the general public.

“We scientists mustn’t be ‘fortune-tellers’; we have to be ‘sages.’ We must absolutely not use models that exaggerate the dangers of climate change. We would lose all credibility. That is precisely why this type of research is crucial, since it can be used to confirm or modify the models we researchers present to society.

Anna Karin Svenningsson | alfa
Further information:
http://www.vr.se
http://www.su.se

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>