Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Higher sea level may come sooner than expected

18.10.2007
Global Environmental Change. The Role Research on Greenland ice yields new view of global warming.

By studying 120,000-year-old layers in the ice of Greenland, researchers have determined that the ice cover seems to be able to survive a warmer climate better than was previously believed. But at the same time they have found signs that the changes that are nevertheless happening will occur at an unexpectedly rapid rate. The level of the global seas may therefore rise faster than was previously thought.

One example of rapid change was found by scientists who were studying a so-called ice stream, ice that moves like a river through the rest of the inland ice and often forms icebergs at the mouth, so-called calving.

“In just two-three years the speed of a large ice stream nearly doubled. This means that we have underestimated the rapid changes that may ensue from the amounts of ice leaving the ice each year,” says Dorthe Dahl-Jensen, a professor at the Niels Bohr Institute at Copenhagen University. Dorthe Dahl-Jensen is taking part this week in the climate conference “Global Environmental Change: The Role of the Arctic”, arranged by the European Science Foundation, the Swedish Research Council, and the Research Council Formas (Sweden).

Dorthe Dahl-Jensen’s research also indicates that the inland ice can cope with a warmer climate considerably better than previous models calculated. Dorthe Dahl-Jensen and her colleagues are now updating the base for these models, for example by studying how ice moved during the so-called Eem Warm Period.

During the Eem Period, some 120,000 years ago, it was on average several degrees warmer than at present. This warmer climate lasted many thousand years. Scientists have been able to determine this using some dozen parameters, including the oxygen content of the ice. They have also taken DNA samples from under the ice cover. The DNA samples show that it was about 400,000 years ago that inland Greenland was last bare ground. By combining these data, Dorthe Dahl-Jensen has created an updated model that shows that a great deal of the inland ice can remain in place even through a long period of warmer climate than we have had had in modern times thus far.

“We are now approaching the climate and the temperatures that prevailed during the Eem Period,” says Dorthe Dahl-Jensen. “In other words, this research is not about abstract reasoning but rather about something that may soon be a concrete reality. The advantage of researching the inland ice is that we can study how the ice was actually impacted by earlier warm periods and compare this to the models we have for calculating what the future ice cover might look like. If the model fits the Eem Period, then I can rely on the model.”

Dorthe Dahl-Jensen stresses the importance of having reliable models when researchers present their forecasts to politicians and the general public.

“We scientists mustn’t be ‘fortune-tellers’; we have to be ‘sages.’ We must absolutely not use models that exaggerate the dangers of climate change. We would lose all credibility. That is precisely why this type of research is crucial, since it can be used to confirm or modify the models we researchers present to society.

Anna Karin Svenningsson | alfa
Further information:
http://www.vr.se
http://www.su.se

More articles from Earth Sciences:

nachricht NASA eyes Pineapple Express soaking California
24.02.2017 | NASA/Goddard Space Flight Center

nachricht 'Quartz' crystals at the Earth's core power its magnetic field
23.02.2017 | Tokyo Institute of Technology

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>