Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Re-thinking Southern California earthquake scenarios in Coachella Valley, San Andreas Fault

09.12.2014

UMass Amherst geoscientists produce new model of Coachella Valley faults

New three-dimensional (3D) numerical modeling that captures far more geometric complexity of an active fault segment in southern California than any other, suggests that the overall earthquake hazard for towns on the west side of the Coachella Valley such as Palm Springs and Palm Desert may be slightly lower than previously believed.


The Coachella Valley segment of the southernmost section of the San Andreas Fault in California has a high likelihood for a large rupture in the near future, since it has a recurrence interval of about 180 years but has not ruptured in over 300 years.

Credit: UMass Amherst and Google Earth

New simulations of deformation on three alternative fault configurations for the Coachella Valley segment of the San Andreas Fault conducted by geoscientists Michele Cooke and Laura Fattaruso of the University of Massachusetts Amherst, with Rebecca Dorsey of the University of Oregon, appear in the December issue of Geosphere.

The Coachella Valley segment is the southernmost section of the San Andreas Fault in California. It has a high likelihood for a large rupture in the near future, since it has a recurrence interval of about 180 years but has not ruptured in over 300 years, the authors point out.

The researchers acknowledge that their new modeling offers "a pretty controversial interpretation" of the data. Many geoscientists do not accept a dipping active fault geometry to the San Andreas Fault in the Coachella Valley, they say. Some argue that the data do not confirm the dipping structure. "Our contribution to this debate is that we add an uplift pattern to the data that support a dipping active fault and it rejects the other models," say Cooke and colleagues.

Their new model yields an estimated 10 percent increase in shaking overall for the Coachella segment. But for the towns to the west of the fault where most people live, it yields decreased shaking due to the dipping geometry. It yields a doubling of shaking in mostly unpopulated areas east of the fault. "This isn't a direct outcome of our work but an implication," they add.

Cooke says, "Others have used a dipping San Andreas in their models but they didn't include the degree of complexity that we did. By including the secondary faults within the Mecca Hills we more accurately capture the uplift pattern of the region."

Fattaruso adds, "Others were comparing to different data sets, such as geodesy, and since we were comparing to uplift it is important that we have this complexity." In this case, geodesy is the science of measuring and representing the Earth and its crustal motion, taking into account the competition of geological processes in 3D over time.

Most other models of deformation, stress, rupture and ground shaking have assumed that the southern San Andreas Fault is vertical, say Cooke and colleagues. However, seismic, imaging, aerial magnetometric surveys and GPS-based strain observations suggest that the fault dips 60 to 70 degrees toward the northeast, a hypothesis they set out to investigate.

Specifically, they explored three alternative geometric models of the fault's Coachella Valley segment with added complexity such as including smaller faults in the nearby Indio and Mecca Hills. "We use localized uplift patterns in the Mecca Hills to assess the most plausible geometry for the San Andreas Fault in the Coachella Valley and better understand the interplay of fault geometry and deformation," they write.

Cooke and colleagues say the fault structures in their favored model agree with distributions of local seismicity, and are consistent with geodetic observations of recent strain. "Crustal deformation models that neglect the northeast dip of the San Andreas Fault in the Coachella Valley will not replicate the ground shaking in the region and therefore inaccurately estimate seismic hazard," they note.

This work was supported by the National Science Foundation. More: http://geosphere.gsapubs.org/content/10/6/1235.abstract

Janet Lathrop | EurekAlert!

Further reports about: Amherst Coachella Massachusetts earthquake geometric geometry ground shaking observations rupture strain

More articles from Earth Sciences:

nachricht In times of climate change: What a lake’s colour can tell about its condition
21.09.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?
21.09.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>